
HaskHOL: A Haskell Hosted Domain Specific
Language Representation of HOL Light

Evan Austin and Perry Alexander

The University of Kansas
Information and Telecommunication Technology Center

2335 Irving Hill Rd, Lawrence, KS 66045
{ecaustin,alex}@ittc.ku.edu

Abstract. Traditionally, members of the higher-order logic (HOL) the-
orem proving family have been implemented in the Standard ML pro-
gramming language or one of its derivatives. This paper presents a de-
scription of a recently initiated project intended to break with tradition
and implement a lightweight HOL theorem prover library, HaskHOL, as
a Haskell hosted domain specific language. The goal of this work is to
provide the ability for Haskell users to reason about their code directly
without having to transform it or otherwise export it to an external
tool. The paper also presents a verification technique leveraging popular
Haskell tools QuickCheck and Haskell Program Coverage to increase
confidence that the logical kernel of HaskHOL is implemented correctly.

Key words: Haskell, HOL, HOL Light, Theorem Prover

1 Introduction

Modern higher-order logic (HOL) theorem provers have a rich history dating
back to when Michael Gordon first modified Cambridge LCF, a system based
on Robin Milner’s Logic for Computable Functions, back in the late 1980s[10].
Starting with HOL90, a reimplementation of the first stable release of a HOL
system (HOL88), these theorem provers have all shared more than their logi-
cal basis; they were all implemented in Standard ML or one of its derivatives.
This is a trend that has continued to this day, leaving users of other functional
programming languages with few to no native representations of a HOL system.

HaskHOL aims to correct this deficiency for Haskell by providing a hosted
domain specific language (DSL) representation of a lightweight HOL theorem
prover that users can leverage to reason about their code without having to leave
the Haskell universe. The design and implementation of HaskHOL is heavily in-
fluence by HOL Light, a popular member of the HOL theorem proving family
developed by John Harrison, sharing its logical kernel and data type representa-
tions[12]. The HOL Light system was selected as the basis of HaskHOL because
it has a much simpler logical kernel when compared to other HOL provers while
still maintaing comparable proving power and demonstrating an impressive track
record of successful verifications of industrial problems.



206

This paper will present the challenges that arose when implementing a log-
ical system that has previously relied on a strict and impure functional lan-
guage, OCaml, in a lazy and pure functional language, Haskell, and how the
HaskHOL implementation overcomes them. Specifically, we explore the use of
Haskell type classes to replicate the original HOL Light’s quotation parsing func-
tionality and the use of monads to represent the various side effects that the HOL
Light kernel requires. Additionally, the paper documents the use of two Haskell
tools, QuickCheck[5] and Haskell Program Coverage[9], to raise assurance that
HaskHOL’s implementation of HOL Light is correct.

2 Motivation

The lack of a simple and lightweight Haskell theorem proving library is a problem
that has recently manifested itself in the research of the System Level Design
Group (SLDG) at The University of Kansas. The SLDG is leading the develop-
ment of Rosetta, a specification language for system-level hardware and software
co-design[1]. Part of this development involves implementing and maintaing a
robust toolset to aid in the design and verification process. One of these tools
provides a transformation from Rosetta to PVS, a specification language and
verification toolset developed by SRI International[15], to prove properties spec-
ified within system components. Often the targeted properties are simple enough
that they could be proved without requiring the full level of specification and
interaction that PVS provides. For example, a property that states that the con-
catenation of two bit vectors results in a new bit vector with a length equal to the
sum of the individual bit vectors’ lengths can be easily proved without having to
translate an entire component from Rosetta to a PVS specification. Instead, it
might be preferred to interface with a lightweight theorem proving system that
will either prove the property trivially or pass it to a decision procedure solver
to do the heavy lifting, in either case handling the proof automatically without
user interaction.

Additionally, there may be times when we desire to reason about the Haskell
code of the tools directly, or to extend the tools themselves with reasoning power,
like a type correctness condition (TCC) discharger for the Rosetta type checker.
For this reason, we used a theorem prover library that can be leveraged at the
Haskell level. There have been several attempts to bridge a connection between
Haskell code and external reasoning tools, several of which are mentioned in
more detail in the related work section (Section5). All of these attempts take
an approach similar to the Rosetta to PVS transliteration in that they require
outside tools to move between the code universe and the reasoning universe
and still require a degree of user interaction once inside the reasoning universe.
HaskHOL attempts to bypass these restrictions by representing the theorem
proving library as a hosted DSL allowing the programmer to reason about their
code without ever leaving Haskell. Furthermore, because of its implementation
as a library, applications can leverage the reasoning power without relying on



207

external tools. This is similar to how Haskell applications can include the Parsec
library, gaining parsing capabilities without having to rely on an external parser.

3 Implementation

As was mentioned in the introduction, HaskHOL is heavily influenced by HOL
Light, sharing its logical kernel and term, type, and theorem representations.
Because of this, it should be noted that, where appropriate and possible, names
of constructors and functions in the implementation of HaskHOL are the same or
similar to those selected in the original implementation of HOL Light. This was
an intentional design decision to help those familiar with HOL Light quickly
acclimate themselves to HaskHOL. HaskHOL began as a direct port of HOL
Light and was gradually refined to take advantage of Haskell-specific features.
As we demonstrate in the following subsections, sometimes this was done because
Haskell lacks the impure features of OCaml that HOL Light relies on, and other
times it was done because it allowed a duplication of a HOL Light feature in
a simpler way or in a way that could shrink the trusted computing base of the
prover comparatively. As HaskHOL matures beyond the kernel, the use of these
Haskell-specific features increases the distance between itself and HOL Light, an
observation that will be discussed in more detail in the conclusion and future
work section (Section 6).

3.1 Terms and Types

At the lowest level, the HOL Light logical system is based on a typed version
of Church’s λ-calculus. Each term can be expressed as a variable, constant,
application, or abstraction, and each term has a unique type that is either a type
variable or an application of types to a constructor. HaskHOL, like the original
HOL Light implementation in OCaml, captures this concept with recursive data
types as shown below:

data HolType

= TyVar String

| TyApp String [HolType]

data HolTerm

= Var String HolType

| Const String HolType

| Comb HolTerm HolTerm

| Abs HolTerm HolTerm

Given these constructors, the boolean type can be expressed as (TyApp "bool"

[]) and the truth term can be expressed as (Const "T" (TyApp "bool" [])).
A potential burden to the user does exist when trying to express larger terms
using these primitive constructors. To combat this, HOL Light provides extra



208

syntax for quotation parsing which allows a user to express a term in a more
”human friendly” string representation.

HaskHOL approaches this problem in a similar manner, exposing more ex-
pressive external data types, Term and Type, parsing functions to translate from
strings to Term and Type, and an elaboration function to transform from Term

to HolTerm and Type to HolType. A Haskell type class, TermRep, is used to de-
fine a function to translate any one of these term representations to a HolTerm.
Using this type class in the context of a wrapper function allows the user to call
a function that requires a HolTerm input with any of the previously mentioned
term representations that they would like. This is demonstrated in the code be-
low (Note: HolM is a monadic type and will be explained in Section 3.4 and <=<

is simply a monadic composition operator.):

class TermRep a where

toHT :: a -> HolM HolTerm

someRule :: (TermRep t) => t -> HolM a

someRule = someRule’ <=< toHT

someRule’ :: HolTerm -> HolM a

someRule’ tm = return undefined

-- String representation

ex1 = someRule "x:bool"

-- Term representation

ex2 = someRule (As (EVar "x") TyBool)

-- HolTerm representation

ex3 = someRule (Var "x" (TyApp "bool" []))

This technique of using a type class with a wrapper function provides similar
functionality to quotation parsing without having to increase the trusted com-
puting base of the prover system by relying on an additional pre-processor, like
camlp5 for OCaml, or a compile-time metaprogramming library like Template
Haskell that provides quasi-quotation capabilities.

3.2 Logical Kernel

The logical kernel of HOL Light is based on the traditional notion of theorems,
a data type that represents a logical formula, or boolean term, that has been
proved. The notation ` c represents a theorem that says c is proved and a1, ...,
an ` c represents a theorem that says c is proved under the assumption that
a1, ..., an are all also proved. HaskHOL represents theorems with the following
data type and type synonym:



209

data Sequent a c = Seq [a] c

type Theorem = Sequent HolTerm HolTerm

In HaskHOL, a Theorem should only be created through the application of one
of the primitive inference rules of the HOL Light logical system. The primitive
rules themselves are not interesting in the context of this paper, however, their
implementation for HaskHOL is.

As mentioned in the introduction, traditionally HOL theorem provers have
been implemented in a version of Standard ML, a strict and impure functional
programming language. HaskHOL breaks from tradition in that it is imple-
mented in Haskell, a lazy and pure functional programming language. The
challenges presented by moving from a strict/impure language to a lazy/pure
language become apparent immediately in the implementation of the primitive
inference rules. For example, the original OCaml implementation of one of the
rules, ASSUME, and the direct Haskell translation is given below:

Original HOL Light Code

let ASSUME tm =

if Pervasives.compare (type_of tm) bool_ty = 0

then Sequent([tm],tm)

else failwith "ASSUME: not a proposition"

Equivalent Haskell Code

cASSUME :: HolTerm -> Theorem

cASSUME tm = if (type_of tm) == tybool

then Seq [tm] tm

else error "cASSUME: not a proposition"

The issue with the presented Haskell code is that error is not a very ro-
bust way to report errors in a program. Haskell’s lazy evaluation means that
the exceptions thrown by error due to a non-well-typed term or a failure ear-
lier in a chain of inference rule applications can potentially remain hidden or
unaddressed instead of being handled immediately like it would be in a strict
language. Furthermore, the only way to catch an exception thrown by error is
to do so in the IO monad. Given these limitations, HaskHOL instead uses the
Error monad to take advantage of its throwError/catchError functions and
its strictness in dealing with whether or not a previous monadic computation
resulted in an exception. The updated Haskell code is shown below:

Updated Haskell Code With Error Monad

cASSUME :: (MonadError String m) => HolTerm -> m Theorem

cASSUME tm =

do { ty <- type_of tm

; if ty == tybool



210

then return $ Seq [tm] tm

else throwError "cASSUME: not a proposition"

}

The use of monads to represent side effects, like the error exceptions in this case,
is common in Haskell programs and is something that will again be utilized in
later sections.

3.3 Context

The previous section presented the definition of a theorem as a1, ..., an ` c.
Perhaps more accurately, the definition should be Γ a1, ..., an ` c where Γ
is a context holding all of the types, constants, definitions, and axioms that
have been loaded and the environments for type and term variables necessary to
prove the theorem. The original HOL Light implementation takes advantage of
OCaml’s global references to keep track of all of these pieces of the context, as
demonstrated below for constants:

let the_term_constants =

ref ["=",Tyapp("fun",[aty;Tyapp("fun",[aty;bool_ty])])]

let get_const_type s = assoc s (!the_term_constants)

HaskHOL instead represents the concept of a context with a new datatype using
record syntax as shown below:

data HolContext = Ctxt {constants::[(String, HolType)]}

initCtxt =

Ctxt [("=", TyApp "fun" [aty, TyApp "fun" [aty, bool_ty]])]

lookupConstType :: String -> HolContext -> Maybe HolType

lookupConstType x env = lookup x (constants env)

get_const_type :: (MonadError String m) =>

String -> HolContext -> m HolType

get_const_type x env =

case lookupConstType x env of

Nothing -> throwError "get_const_type"

Just ty -> return ty

The obvious challenge is how to make the this context available to the func-
tions and inference rules that need it given that Haskell has no notion of global
state. As is standard in Haskell programs, this is done using the State monad.
Implementations of the mk const function in OCaml and Haskell are shown
below for comparison:

Original HOL Light Code



211

let mk_const(name,theta) =

let uty = try get_const_type name with Failure _ ->

failwith "mk_const: not a constant name" in

Const(name,type_subst theta uty)

Haskell Code Utilizing State Monad

mk_const :: (MonadState HolContext m, MonadError String m) =>

String -> HolTypeEnv -> m HolTerm

mk_const name tyenv =

do ctxt <- get

catchError (do uty <- get_const_type name ctxt

return $ Const name $ type_subst tyenv uty

(\ _ -> throwError "mk_const")

3.4 Putting It All Together

As became evident with the mk const example, the combination of using the
Error and State monads can lead to a relatively large context for the type of a
HaskHOL rule or function. To address this concern, HaskHOL includes a type
synonym that uses monad transformers to create a new monad type, HolM. This
type and an associated run function is shown below:

type HolM m = StateT HolContext (ErrorT String m)

runHolT x = runErrorT (evalStateT x initCtxt)

Putting this together with what has been demonstrated in the previous sec-
tions we have HaskHOL’s final representation of HOL Light’s primitive inference
rules and associated functions, as demonstrated by the updated mk const and
cASSUME examples shown below:

HaskHOL Code

mk_const :: (Monad m) =>

String -> HolTypeEnv -> HolM m HolTerm

mk_const name tyenv =

do ctxt <- get

catchError (do uty <- get_const_type name ctxt

return $ Const name $ type_subst tyenv uty

(\ _ -> throwError "mk_const")

cASSUME :: (Monad m, TermRep a) => a -> HolM m Theorem

cASSUME = cASSUME’ <=< toHT

cASSUME’ :: (Monad m) => HolTerm -> HolM m Theorem



212

cASSUME’ tm =

do { ty <- type_of tm

; if ty == tybool

then return $ Seq [tm] tm

else throwError "cASSUME: term not a proposition"

}

4 Verification with QuickCheck

The ultimate goal of a theorem prover is to provide a verification that some
property is correct, or true. The question arrises, though, how do you know
when the prover itself is correct? Most LCF style provers, including HOL Light
and HaskHOL, reduce all inference rules down to a combination of primitive
rules implemented by a much smaller logical kernel. The question still remains,
though, how do you know when the kernel is correct? HaskHOL attempts to
answer this question by verifying the kernel using QuickCheck, a tool specifically
designed for automated testing of Haskell programs.

4.1 Brief Overview of QuickCheck

QuickCheck works by having the user define a property about their code that
should hold true, and then generating a large, random set of data to test this
property. For example, if the user would like to verify that their definition of
addition is commutative, the following property could be written:

prop_add_com :: Int -> Int -> Bool

prop_add_com x y = (x + y) == (y + x)

The quickCheck function could then be called with the desired user settings,
including values like the total number of tests to run and the number of discarded
inputs allowed before failure. It would randomly generate values for x and y and
confirm that with each pair of values the property holds. Testing the kernel of
HaskHOL is not this simple however, because, as was shown in Section 3.4, all
of the primitive inference rules are monadic in nature.

To handle this, QuickCheck provides an extension to test monadic code[6].
Four main functions are added to help convert a monadic property (PropertyM)
to a regular property. For reference purposes, their names and types are shown
below:

pre :: Monad m => Bool -> PropertyM m () Source

run :: Monad m => m a -> PropertyM m a

assert :: Monad m => Bool -> PropertyM m () Source

monadicIO :: PropertyM IO a -> Property

The pre function converts a regular boolean to a PropertyM to express a precon-
dition, run converts a monadic computation to a PropertyM, and assert con-
verts a regular boolean to express a postcondition. Once all of the pieces of the



213

property are converted to PropertyM computations, a function like monadicIO

will convert this monadic property into a regular property which quickCheck

can operate over. This technique is the one applied to verify HaskHOL’s logical
kernel and is explained in more detail in Section 4.3.

4.2 Term Generation

In order for QuickCheck to be able to generate the random inputs to test prop-
erties, an instance of the Arbitrary type class must be defined for the type
of input that needs to be generated. Most typically this is done using combi-
nators and functions predefined in the QuickCheck library to help guarantee
that the inputs generated fit the random nature desired. For a simple recursive
data type like HolTerm or HolType this is a relatively straightforward and well
documented process. Depending on the property that is to be tested, though,
simple random generation may not be appropriate. For example, a few of of the
primitive inference rules of HaskHOL expect a well typed term or proposition
as input. Rather than generating an extremely large number of random inputs
in search of these terms, it might be preferred to generate only those terms to
begin with. HaskHOL includes several of these more specialized generators and
associated property quantifiers, including a generator that creates a term from
a given type, term from type, and a generator and quantifier for well typed
propositions shown below:

genWellTypedProp :: Int -> Gen HolTerm

genWellTypedProp n = do tm <- term_from_type tybool n

return tm

forWellTypedProp :: Testable b => (HolTerm -> b) -> Property

forWellTypedProp = forAll $ sized genWellTypedProp

4.3 Verifying Inference Rules

Verifying an inference rule with QuickCheck is a simple, two-step process. First
a proposition must be written that captures the expected behavior of the rule.
This involves identifying the inputs to be randomized, applying the rule to these
inputs, and comparing the result to the expected output. For example, the propo-
sition to test the cASSUME rule is shown below:

assume :: (Monad m) => HolTerm -> m Bool

assume t = do res <- runHolT $ cASSUME t

let ans = Seq [t] t in

case res of

Left _ -> return False

Right thm -> return $ thm == ans



214

In this case we want to supply a HolTerm to cASSUME and expect to get back a
a Theorem that shows that term proved under the assumption of itself, captured
by Seq [t] t. After the application of the rule, False is returned if there is a
failure, otherwise, the comparison between the result and the expected answer
is returned.

The second step involves identifying all of the cases where this rule may
succeed or fail and developing a property to test for each case. For example,
cASSUME should always succeed when supplied with a well typed proposition
and should always fail when not. The property quantifier from Section 4.2 can
be used to guarantee the first condition and can be combined with the monadic
functions from Section 4.1 to produce the property shown below:

prop_assume1 =

forWellTypedProp (\ t -> monadicIO $ do res <- assume t

assert res)

Likewise, a property quantifier that generates well typed terms of a random
type can be combined with a precondition that the term is not a boolean type
to produce a property to test for failure, again as shown below:

prop_assume2 =

forWellTypedTerm (\ (ty, t) ->

monadicIO $ do pre (ty /= tybool)

res <- assume t

assert $ not res)

4.4 Measuring Test Coverage With Haskell Program Coverage

The obvious question presented by verification of this style is how does one
know when all of the possible success and failure conditions have been iden-
tified. HaskHOL attempts to answer this question by using Haskell Program

Coverage, a tool-kit specifically designed for this purpose. Haskell Program

Coverage works by compiling a Haskell program with the -fhpc flag and then
during the execution of the program keeping track of which expressions, alterna-
tives, and local declarations are used as well as the coverage of boolean conditions
in the program. This information can be reported in a short summary format
using the hpc report tool as demonstrated by the following terminal dump:

$ ./main

Testing cASSUME Success

+++ OK, passed 1000 tests.

Testing cASSUME Failure

+++ OK, passed 1000 tests.

$ hpc report main

7% expressions used (290/4135)

1% boolean coverage (1/56)



215

0% guards (0/18), 18 unevaluated

2% ’if’ conditions (1/38), 1 always False, 36 unevaluated

100% qualifiers (0/0)

5% alternatives used (21/357)

2% local declarations used (1/48)

10% top-level declarations used (28/259)

Unfortunately, the way that Haskell Program Coverage works is that this
report actually contains statistics for every library imported by the program,
not necessarily just the functions that are being targeted by the testing. There
are flags to reduce the reporting to a per-module basis or to exclude certain
modules. However, it is still difficult to see how these statistics relate to the
Haskell code that has been written. For this reason, Haskell Program Coverage

also provides the hpc markup tool. This tool produces annotated HTML files
that use a color-coding system to indicate which portions of the code have been
visited and which booleans evaluate to always true or always false, potentially
indicating a poorly written boolean condition or test of that condition.

At this point, HaskHOL leverages this combination of Haskell Program

Coverage and QuickCheck to verify its logical kernel to provide assurance as to
the correct implementation of the already widely used and highly trusted logical
kernel of HOL Light. Furthermore, it is planned to extend this testing procedure
to any extensions made to the HaskHOL kernel including derived rules and the
tactic language.

5 Related Work

Recent work has been completed by Florian Haftmann to provide higher-order
logical reasoning in Haskell using a different method. Rather than trying to
implement a native representation of HOL in Haskell, Haftmann presents two
tools which work together to provide a translation between specifications written
in Isabelle, another popular member of the HOL theorem proving family, and
executable Haskell source[11]. The generation of code from an Isabelle specifi-
cation is presented as an established and mature tool, however, Haskabelle, the
tool which provides a translation in the opposite direction, still appears to be a
young and not fully realized utility. Because Haskabelle more closely matches the
intended use case of HaskHOL, proving properties of previously written Haskell
code, it will be interesting to see how this tool develops and what advantages
and disadvantages appear when comparing the two different approaches.

Agda is another tool that attempts to allow formal reasoning about existing
Haskell code utilizing its own dependently typed language and proof assistant
whose concrete syntax is heavily inspired by Haskell[2]. Because of the similari-
ties between the two languages, it is possible for Agda to translate code produced
from compiling Haskell into an equivalent Agda specification which can be rea-
soned about using Agda’s proof assistant. This is similar to the approach taken
by Haskabelle, the primary differences being the logical foundations and proof
techniques associated with each tool.



216

In addition to the various attempts to reason about Haskell programs with
external tools, there is at least one major attempt besides HaskHOL to bring
these reasoning capabilities to Haskell programs directly. Ivor is a type theory
based theorem prover library that provides an API for embedding theorem prov-
ing capablilites inside of Haskell applications[4]. Instead of dedicating itself to
one fixed logical system, like HaskHOL has done by selecting the HOL Light
kernel, Ivor aims to be more of an extensible theorem proving framework with
the goal of implementing a variety logical systems and tactic languages that can
change based on the application. There is also a difference in the separation
level between the Haskell code and the theorem prover, with HaskHOL taking
the hosted DSL approach and Ivor taking the separate program with exposed
API approach.

Regarding verification of the HOL Light kernel, John Harrison initiated work
to self-verify an imperfect model of HOL Light (lacking definitional mechanisms).
Harrison’s work is particularly interesting because it appears to be a direct
verification of the HOL Light semantics whereas HaskHOL’s verification is over
a more abstract specification captured by user-written properties.

6 Conclusions and Future Work

HaskHOL at this point encompasses a verified, and, therefore, assumed accu-
rate implementation of the HOL Light logical kernel. Additionally, there has
been success extending this kernel to allow for derived rules and definitions for
propositional logic and equality reasoning, term conversion, and term rewriting.
There has also been work to extend HaskHOL with a tactic language, however,
this work has been delayed to instead investigate if the computational model
for HaskHOL can be reduced to the applicative functor level, making reasoning
about tactics and further extensions easier.

The next immediate target for work with HaskHOL is to build a linkage
between it and a decision procedure solver. The goal is to target the SMT-
Lib Language[16] with a specialized HaskHOL proof tactic, similar to the work
linking Yices to Isabelle[7] and linking Isabelle to more general SMT solvers[3].

There are also several additional ongoing projects at the University of Kansas
which would be potentially interesting to link with HaskHOL. Notably, Andy
Gill’s group is currently developing ChalkBoard, a DSL for image generation,
processing, and animation[14]. A potential linkage between ChalkBoard and
HaskHOL would present a new and interesting way to display and animate
proofs for the purposes of demonstration and teaching. Also coming out of Andy
Gill’s group is Kansas Lava, a hardware description DSL following the Lava de-
sign pattern[8]. A potential linkage between Kansas Lava and HaskHOL would
allow formal reasoning about the circuits being designed, again without having to
leave the Haskell universe. Hopefully, given more time, HaskHOL can continue
to mature and present itself as a viable library for higher-order logic proving
within Haskell for all sorts of other, as yet unseen, applications.



217

References

1. Rosetta Specification Language, http://rosetta-lang.org/.
2. Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. Verifying

haskell programs using constructive type theory. In In Haskell05. ACM Press,
2005.

3. Damian Barsotti, Leonor Prensa Nieto, and Alwen Tiu. Verification of clock syn-
chronization algorithms: experiments on a combination of deductive tools. Form.
Asp. Comput., 19(3):321–341, 2007.

4. Edwin Brady. Ivor, a proof engine. Draft paper, available at http://www.cs.

st-andrews.ac.uk/~eb/drafts/ivor.pdf.
5. Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing

of haskell programs. In ACM SIGPLAN Notices, pages 268–279. ACM Press, 2000.
6. Koen Claessen and John Hughes. Testing monadic code with quickcheck. In IN

PROC. ACM SIGPLAN WORKSHOP ON HASKELL, pages 65–77, 2002.
7. Levent Erkk and John Matthews. Using yices as an automated solver in is-

abelle/hol. In In Automated Formal Methods08, pages 3–13. ACM Press, 2008.
8. Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and Brett Wer-

ling. Introducing Kansas Lava. In Proceedings of the Symposium on Implementa-
tion and Application of Functional Languages, Sep 2009.

9. Andy Gill and Colin Runciman. Haskell Program Coverage. In Proceedings of the
2007 ACM SIGPLAN Workshop on Haskell. ACM Press, September 2007.

10. Mike Gordon. From lcf to hol: a short history. In Proof, Language, and Interaction,
pages 169–185. MIT Press, 2000.

11. Florian Haftmann. From higher-order logic to haskell: There and back again. In
John P. Gallagher and Janis Voigtländer, editors, Proceedings of the 2010 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2010, Madrid, Spain, January 18-19, 2010, 2010.

12. John Harrison. Hol light: A tutorial introduction. In Proceedings of the First Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD96),
volume 1166 of Lecture Notes in Computer Science, pages 265–269. Springer-
Verlag, 1996.

13. John Harrison. Towards self-verification of hol light. In In International Joint
Conference on Automated Reasoning, pages 177–191. Springer-Verlag, 2006.

14. Kevin Matlage and Andy Gill. ChalkBoard: Mapping functions to polygons. In
Proceedings of the Symposium on Implementation and Application of Functional
Languages, Sep 2009.

15. S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification system,
1992.

16. Silvio Ranise, Loria, and Cesare Tinelli. The smt-lib standard: Version 1.2. Tech-
nical report, 2006.


