
Chasing Sound, Efficient Proof with a Monadic,
HOL System

Evan Austin, Perry Alexander

The University of Kansas
Information and Telecommunication Technology Center

2335 Irving Hill Rd, Lawrence, KS 66045
{ecaustin,alex}@ittc.ku.edu

Abstract. This paper proposes an alternative approach to implement-
ing a Higher-Order Logic (HOL) theorem prover that follows a pure,
monadic style. Key to this implementation is an extensive use of compile-
time meta-programming techniques in an attempt to come closer to the
run-time performance of existing, side-effectful systems. Starting from
a naive implementation, a step-wise refinement is provided where each
change is motivated by improving performance without sacrificing sound-
ness or safety. The ultimate goal of this work is not to argue that using
purity is the necessary and best choice. Rather, the objective is to ex-
plore if purity can reveal a path towards a higher level of trust in proof
systems that does not detract from their real-world usability. In order to
test this hypothesis, the techniques presented in this paper are used to
implement a HOL system with the Glasgow Haskell Compiler.

1 Introduction

Higher-Order Logic (HOL) theorem provers and the ML programming language
have enjoyed a rich history together dating back to the logic’s earliest days [12].
Even as new functional languages rose to popularity, HOL systems continued to
rely on varying flavors of ML. The fact that the HOL community never suffered
an ideological split from ML is of no great surprise. For one, there is a tradition
among HOL provers where new versions draw from previous code bases quite
heavily, a practice that obviously runs orthogonal to a stylistic or linguistic
rewrite. Also, the ML language was tailor-made to implement HOL’s predecessor,
the Logic for Computable Functions.

This paper presents work lying along a road less traveled, an implementation
of a HOL system written in GHC Haskell [1, 18]. The objective behind the switch
to Haskell is to replace existing HOL systems’ pervasive reliance of side-effects
with a pure, monadic computation model. The authors believe that this monadic
model presents an opportunity to potentially increase trust in the proof system,
both by structuring effects with more formality and by providing a hook into
GHC’s advance type system extensions.

2 Chasing Sound, Efficient Proof with a Monadic, HOL System

The consequence of this change is that impact of run-time effects can no
longer be passively ignored. If a function has a potential effect, it will be stated
explicitly at both the type and term level by the presence of a monadic compu-
tation. This necessitates two major differences when compared with more tradi-
tional implementations. First, theory contexts must shift from the memory level
to the term level such that they can be passed around as values between compu-
tations, either implicitly or explicitly. Second, computations must be reevaluated
every time they are bound in a new scope in the event that a change in context
would lead to a change in effect.

In an attempt to minimize both user burden and performance implications
that arise from these changes, the system takes extensive advantage of compile-
time meta-programming techniques. These techniques are introduced in the pa-
per as iterative refinements to an initial, naive, monadic system. The resultant
theorem prover, HaskHOL, lies somewhere between the lightweight, interpreted
approach of HOL Light [13] and compiled systems with larger footprints, such
as HOL4 [24] or Isabelle/HOL [19].

2 Comparing Lightweight Approaches

The lightweight implementations mentioned in the introduction are labeled as
such for their desire to model as much of the prover theory and syntax in their
host programming languages as possible. By projecting to the host level, the
proof system is able to to take advantage of existing libraries, reducing burden
of implementation and increasing trust in the resultant code. This approach
is not unique to theorem provers and is, in fact, just an example of shallowly
embedding a domain specific language (DSL) in a host language.

When developing HaskHOL, the lightweight approach was selected given the
great success that has been achieved using monads to implement DSLs [14, 15,
11]. In short, the purpose of the monad is to provide a model of computation
for the language’s primitive combinators. For a HOL system, these primitive
combinators map directly to the methods provided by the prover’s logical kernel.
The details of HaskHOL’s HOL monad are not particularly important in the
context of this paper as long as we operate under the assumption that it can be
used to faithfully and accurately implement a logical kernel without introducing
unsoundness.

To provide a convenient point to begin comparison, Figure 1 shows two sep-
arate implementations of HOL’s TRUTH derived rule. The first is taken from HOL
Light, a lightweight HOL system written in OCaml. The second is also taken
from a lightweight HOL system, this time written in Haskell with a monadic
style, best representative of a very primitive version of HaskHOL. As alluded
to in the introduction, the principle differences between these implementations
focus on how the context of theories are handled and how side-effectful expres-
sions are bound. These differences are present in nearly every piece of code that
implements a proof, but can perhaps be most simply demonstrated by examining
how the respective systems handle parsing the same HOL term.

Chasing Sound, Efficient Proof with a Monadic, HOL System 3

Fig. 1. Comparative Implementations of TRUTH

HOL Light

let TRUTH = EQ_MP (SYM T_DEF) (REFL ‘\p:bool. p‘);;

Primitive HaskHOL

thmTRUTH :: HOL Theorem

thmTRUTH =

do lth <- ruleSYM =<< defT

ruleEQ_MP lth =<< ruleREFL =<< parseHOLTerm "\\p:bool. p"

In the case of HOL Light, the Camlp5 [7] extension is used to provide a
convenient back-tick notation for a tokenizing stream parser for HOL terms.
The trick behind this parser is that type inference and term validity checking
is enabled by examining token membership in the relevant parts of the theory
context, such as lists of acknowledged binders and operators. These pieces of
the context are stored in memory references that are manipulated by globally
accessible methods provided to the user, making the parser one of an extensible
nature. For example, to correctly parse the term from above, \p:bool. p, it is
required that \ be an accepted binder and bool be a defined type constant. Given
OCaml’s imperative, interpreter evaluation style [17], this necessitates that the
appropriate method calls are made by the user before the parsing is to happen,
however, once the term is parsed it can be reused without concern for what the
current context is.

Conversely, the primitive HaskHOL implementation must check the current
context nearly every time the parsed term is to be used. This is a consequence
of the monadic model where computations are reran every time they are bound
in a new scope. Reparsing terms so frequently presents a significant issue when
working with an extensible parser, like the one in HOL systems. First, because
no guarantees can be made about where in the chain a call to the parser will
be made, any context modifying computations must be lifted to the start of
the chain to guarantee that they will be ran before any parsing occurs. Second,
HaskHOL’s parser, like the rest of the system, is written in a monadic style that
can be extremely slow based on how much backtracking it needs to do. There are
tricks that can be used to increase its speed, like building a specialized expression
parser for the provided context before parsing begins, but given that the context
could change every time we parse this still leads to parsing dominating proof
code in performance metrics.

Early versions of HaskHOL attempted to minimize the impact of these two
issues by grouping the context modifying computations of a theory together into
a load function that could be bound before a proof. For example, the code below
would start with the initial theory context and load the boolean logic theory
before running thmTRUTH:

runHOLCtxt ctxtKernel $ loadBoolThry >> thmTRUTH

4 Chasing Sound, Efficient Proof with a Monadic, HOL System

Obviously this solution is far from perfect given that if the user neglects to bind
the correct load functions the result will be, at best, a confusing parser error or,
at worst, a loss of soundness.

3 From Run-Time to Compile-Time

Ideally, HaskHOL would be able to mimic HOL Light’s “parse once, use many”
behavior while also bundling the necessary parser extensions with the appropri-
ate parsing computations. Template Haskell, a compile-time meta-programming
library for Haskell [22], provides a facility, quasiquotation, that does just this.
The general idea behind quasiquotation is to provide a mechanism that allows
the programmer to write a portion of their code in the syntax of their DSL.
This syntax is then parsed and manipulated as directed by the programmer be-
fore automatically being projected back into Haskell’s core abstract syntax. The
result can then be injected back into the original source code at compile time,
such that the parsed term can be used as a pure value at run time. In a sense,
quasiquotation provides the same functionality as Camlp5’s preprocessor, with
the added benefit that all work is done at compile time.

Quasiquoters, like the rest of Template Haskell, allow for splicing into a va-
riety of locations. For parsing, we only care about splicing into expressions.
Therefore, all we need to construct our parsing quasiquoter is to provide a func-
tion of the type String -> Q Exp where Q is Template Haskell’s monad and Exp is
the data type for Haskell’s abstract syntax for expressions. If we rely on Haskell’s
generic programming libraries and GHC’s DeriveDataTypeable extension we can
simplify that significantly by letting Haskell automatically derive the translation
between theHOLTerm and Exp data types.

Note that this resultant function type, String -> Q HOLTerm, nearly matches
the type of our monadic parser, with the exception that the result is returned in
the Q monad instead of the HOL monad. We can provide a path from HOL to Q using
a combination of the previously shown runHOLCtxt and Template Haskell’s runIO.
Forcing evaluation with runIO can be thought of as the compile-time analogue
of using unsafePerformIO, a Haskell function known not to be type safe. The
key difference between the two is that with runIO still ties execution back to
the Q monad, which can’t be escaped by the user, guaranteeing the ordering of
the effects in a single Q computation. This means that any use of runIO will be
safe as long as the splices that rely on it are explicitly dependent and staged
appropriately, a requirement enforced by Template Haskell, or the ordering of
their execution does not matter. Parsing, in our case, falls within the second
classification as long as we can construct the appropriate context outside of the
parsing function.

Chasing Sound, Efficient Proof with a Monadic, HOL System 5

Piecing this all together, we are left with the the following definitions for
HaskHOL’s base quasiquoter:

baseParse :: String -> HOLContext -> Q HOLTerm

baseParse s ctxt = runIO . liftM fst $ runHOLCtxt ctxt work

where work :: HOL HOLTerm

work = case holParser s ctxt of

Left err -> throw $ showErrors err

Right ptm -> elab ptm

baseQuoter :: HOLContext -> QuasiQuoter

baseQuoter ctxt = QuasiQuoter quoteBaseExp nothing nothing nothing

where quoteBaseExp x = dataToExpQ (const Nothing) =<< baseParse x

ctxt

nothing _ = fail "quoting here not supported"

To define a quasiquoter for a specific theory we simply provide the corresponding
context; for example: bool = baseQuoter ctxtBool. Using this technique, the ex-
ample for thmTRUTH from Section 2 can be refined to use the new bool quasiquoter:

thmTRUTH :: HOL Theorem

thmTRUTH =

do lth <- ruleSYM =<< defT

ruleEQ_MP lth =<< ruleREFL [bool| \p:bool. p |]

The run-time performance of this computation is markedly improved compared
to its previous iteration, but not without introducing a new concern. Specifically,
the term is parsed with a context that is not guaranteed to be the same, or even
compatible, with the context used to run the rest of the computation. We punt
on this issue for now to revisit it in detail in Section 5.

4 From Terms to Theorems

The key concept from the previous section was the use of a composition of runIO
and runHOLCtxt to force a monadic computation at compile-time. We can easily
extend this practice to cover not only parsing, but any HOL computation that
has a result that can be lifted into the Haskell core syntax:

runCompileTime :: Lift a => HOLContext -> HOL a -> Q Exp

runCompileTime ctxt m =

do (res, _) <- runIO . runHOLCtxt ctxt m

lift res

This splicing function could be used to prove thmTRUTH at compile-time, allowing
us to treat it as a pure value, much like HOL Light does:

thmTRUTH :: Theorem

thmTRUTH =

$(runCompileTime ctxtBool $

do lth <- ruleSYM =<< defT

ruleEQ_MP lth =<< ruleREFL [bool| \ p:bool . p |])

6 Chasing Sound, Efficient Proof with a Monadic, HOL System

The problem becomes that we could just as easily prove an equivalent theorem
by introducing a new axiom:

thmTRUTH :: Theorem

thmTRUTH =

$(runCompileTime ctxtBool $ newAxiom [bool| T |])

Because the splice only returns the resultant value of the computation and not
its resultant context, this reliance on an axiom is never reflected to the user.

The more general statement framing this problem is that computations forced
at compile-time must have a notion of “constantness” to them. That is to say,
they should have a deterministic, read only relationship with the provided con-
text. In order to guarantee this, we need to differentiate between the primitive
combinators that are used to extend theory contexts and those that are benign
and used exclusively for proof. The easiest way to do this is to adjust the defi-
nition of the HOL monad to include a phantom type [6] that can be used to tag
a computation’s behavior at the type level.

The key notion behind phantom types is that they represent a way to su-
perficially differentiate two expressions at the type level without affecting their
term level value. The perennial example is using phantom types to guarantee
well-formedness in a basic expression interpreter:

data Expr a = Expr String

mkConst :: Show a => a -> Expr a

plus :: Expr Int -> Expr Int -> Expr Int

Note that in the definition of the Expr data type, the type variable a is not used
as an argument to any of the constructors; this is what makes it a phantom
type. When expressions are built using the smart constructors shown this type
is filled in automatically, such that the term mkConst 1 ‘plus‘ mkConst 2 would
type-check, but mkConst 1 ‘plus‘ mkConst True would not.

In HaskHOL, we concretize the phantom types of any context modifying
computations in the kernel, similar to the smart constructors above. For example,
the type of newAxiom becomes HOLTerm -> HOL Theory Theorem. Additionally, we
change the type of runCompileTime to indicate that it can only accept proof
computations:

runCompileTime :: Lift a => HOLContext -> HOL Proof a -> Q Exp

Every other occurrence of the HOL monad’s phantom type should be left polymor-
phic so that type inference does not prevent us from mixing these computations
in other areas of our code.

This solution prohibits the above example where context modifying computa-
tions are intentionally used to circumvent sound proof techniques. Interestingly
enough, it also prohibits a class of non-malicious, but technically incorrect, proofs
as well. Take, for example, an attempt to prove at compile time the definition
of a constant which is known to exist in the provided context:

Chasing Sound, Efficient Proof with a Monadic, HOL System 7

defT’ :: HOL Theory Theorem

defT’ = newBasicDefinition ...

loadBoolLib :: HOL Theory ()

loadBoolLib = loadLib $... >> defT’ >> ...

ctxtBool :: HOLContext

ctxtBool = $(... loadBoolLib ...)

defT :: Theorem

defT = $(runCompileTime ctxtBool defT’)

In this case, even though the redefinition is benign, a static typing error will
be thrown for defT because of the conflicting phantom types. The way around
this is to define extraction functions for desired portions of the context. In the
case of definitions, we provide a function that searches the context for definitions
with a left-hand side that matches a provided term and splices the matching
theorem in:

defT :: Theorem

defT = $(extractDefinition ctxtBool [bool| T |])

The user is still protected statically with this approach, as an error is thrown
if the supplied context does not contain an appropriate theorem. However, once
again the crux of the problem is showing that the context that defT is extracted
from is compatible with the context used at run time.

5 Tying Contexts to Computations

Expanding upon the core idea from the previous section, we add yet another
phantom type, this time to the definition of the HOLContext data type. The
purpose of this variable is to provide a type-level reification of the context that
is being used to run a computation, so that this knowledge may be inferred in
other places. After pushing this new variable through to the HOL monad and its
run function, we have the following definitions, taken directly from the current
version of HaskHOL:

newtype HOL t a b = HOL (StateT (HOLContext t) IO b) deriving Monad

runHOLCtxt :: HOLContext t -> HOL t a b -> IO (b, HOLContext t)

runHOLCtxt ctxt (HOL a) = runStateT a ctxt

Following similarly, we can protect theorems proved or extracted at compile
time by tagging them with the context they were generated with:

newtype PTheorem thry = PThm Theorem

protect :: HOLContext thry -> Theorem -> PTheorem thry

protect _ thm = PThm thm

8 Chasing Sound, Efficient Proof with a Monadic, HOL System

While this protection is little more than a wrapper to the existing theorem value,
it serves two significant purposes. First, it provides a mechanism through which
construction and destruction of protected theorems can be restricted via the
module system. Second, it differentiates proven theorems at the type level such
that they can not be used at run-time without first being lifted back into the
HOL monad via the corresponding serve method:

serve :: PTheorem thry -> HOL thry a Theorem

serve (PThm thm) = return thm

Assuming that there exists a tag for the boolean theory, BoolThry, and that
the compile-time proof and extraction functions are written to utilize the above
protection mechanism, we can modify the example from the previous section as
shown below:

defT :: PTheorem BoolThry

defT = $(extractDefinition ctxtBool [bool| T |])

thmTRUTH :: PTheorem BoolThry

thmTRUTH =

$(proveCompileTime ctxtBool $

do lth <- ruleSYM =<< serve defT

ruleEQ_MP lth =<< ruleREFL [bool| \ p:bool . p |])

The compile-time extraction of defT from the ctxtBool context necessitates that
it is tagged with the BoolThry type. Given that, the type of the internal monadic
computation for thmTRUTH can be inferred to be HOL BoolThry Proof Theorem fol-
lowing from its use of defT. The function proveCompileTime checks this type
against what is required for compile-time proof with the boolean theory, re-
sulting in thmTRUTH also being tagged with the BoolThry type, the expected and
correct value.

Notice that unlike the previous section, all of the phantom variables are
being assigned concrete types instead of being left polymorphic. This solution
works when using protected theorems generated from the same context, but
when mixing different contexts things quickly fall apart. Take for example, the
following:

th1 :: PTheorem BoolThry

th2 :: PTheorem ClassThry

exProof :: HOL thry Proof Theorem

exProof =

do th1’ <- serve th1

th2’ <- serve th2

ruleTRANS th1’ th2’

In this case, Haskell can not infer a type for exProof because its monadic compu-
tation has two binds, th1’ and th2’, of different types. This makes perfect sense
from a typing perspective, but is confusing from a logical perspective where we
know that classical logic subsumes boolean logic.

Chasing Sound, Efficient Proof with a Monadic, HOL System 9

6 Expressing More About HaskHOL Contexts

In order to provide protected theorems with a more expressive type to solve
the problem from the last section, we need to take a step back and examine
how contexts in HaskHOL are formed. Recall from Section 2 that the side-
effects that construct a HOL theory are collected and simulated with a single
monadic computation. In the case of advanced theories, frequently there is either
an implicit or explicit dependency on a previously loaded theory. For example,
the definition of falsity in the tactics theory is written in terms of propositional
false from the boolean theory. The construction of the tactics theory context,
therefore, can be expressed as the result of running a chain of computations
containing these two load functions with the kernel theory context:

runHOLCtxt ctxtKernel $ loadBoolThry >> loadTacticsThry

Given the above construction, we know that the tactics theory contains the
entirety of the boolean theory and any theorem protected with the boolean
context should be serveable within a computation ran with the tactics context.
Generalizing this statement, any context can be expressed as a chain of load com-
putations ran with the kernel context. If protection for a theorem is necessitated
by use of knowledge in a context generated by a load computation, L, then that
theorem is serveable within a computation run with any other context that has
L in its own construction chain. As a quick note, the above statement depends
on the assumption that all context modifying computations are monotonic; for
example, we can only add definitions, we can never remove them. In practice this
is a bit of a white lie, usually due to the inclusion of methods of convenience,
as is the case with “unparse” commands in HOL Light. For that reason, we ac-
knowledge that the following modification of HaskHOL’s protection mechanism
only guarantees soundness to same level that Section 5’s implementation does if
the system is used in the intended way.

Where the type tags from the previous section faltered is they only reified the
last load computation used to construct a context. In order to check whether a
specific load function is used, as described above, we need to record the entirety
of the computation chain. To implement this, we follow a technique similar to
the one described in the Data types á la carte functional pearl [26]. The key
difference is that because there is a strict linear ordering implied by theories’
dependencies on each other, we don’t need the full expressiveness of Swierstra’s
sum type. For example, the type of the two contexts mentioned above can be
expressed as follows:

ctxtBool :: HOLContext (ExtThry BoolThry BaseThry)

ctxtTactics :: HOLContext (ExtThry TacticsThry (ExtThry BoolThry

BaseThry))

In order to keep the types of protected theorems polymorphic, each theory
has a type class associated with it that reflects that it has been loaded. Instances
of these type classes are defined through inductive inspection of a context type, a

10 Chasing Sound, Efficient Proof with a Monadic, HOL System

process that relies on GHC’s OverlappingInstances extension. Given the follow-
ing definition of the boolean theory’s type class, and assuming a similar definition
exists for the classical theory, we can refine the types from last section’s example:

class BoolCtxt a

instance BoolCtxt (ExtThry BoolThry b)

instance BoolCtxt b => BoolCtxt (ExtThry a b)

th1 :: BoolCtxt thry => PTheorem thry

th2 :: ClassCtxt thry => PTheorem thry

exProof :: (BoolCtxt thry, ClassCtxt thry) => HOL thry Proof Theorem

exProof =

do th1’ <- serve th1

th2’ <- serve th2

ruleTRANS th1’ th2’

As can be seen with the type of exProof, the constraints of a protected theorem
are reflected in any other computation that uses it. This process continues, such
that the type of all top level computations reflect exactly what contexts are
required to run them. The result of all of this is monadic theorem values that
can be used with the same efficiency as pure theorem values with the added
benefits that all proof work is done at compile time and reuse is protected by
static type checking.

7 Evaluation

In order to quantify the impact that compile-time proof has, we compare the
performance of Primitive HaskHOL and HaskHOL over a shared problem set.
We also compare the performance of HOL Light, HaskHOL’s closest relative
in the HOL prover family, to give an indication of how close this technique
brings us to the run-time performance of a side-effectful implementation. The
test problems used are selected from the Intuitionistic Logic Theorem Proving
(ILTP) library [21]. Similar to the Thousands of Problems for Theorem Provers
library [25], the ILTP library is designed to test automated theorem provers,
specifically those restricted to handling only intuitionistically true problems.

In our tests, the restriction to intuitionistic tautology checking is important
for two reasons. For one, the development of Primitive HaskHOL stopped at the
intuitionistic theory, making it the most advanced theory available for testing
with that system. Primarily, though, the intuitionistic theory and its associated
ITAUT derived rule represent the perfect worst case scenario to test. While not
typically used for proof directly, the ITAUT rule is critical in bootstrapping later
first-order logic theories. Given this, an efficiency bottleneck in the intuitionis-
tic theory would necessarily be reflected in later theories, potentially with an
exponential explosion in slowness.

Chasing Sound, Efficient Proof with a Monadic, HOL System 11

The problems selected from the ILTP library are those belonging to Roy
Dyckhoff’s benchmark library [8]. These problems are expressed as classes of
formulae that are scalable in complexity and have variations that are both in-
tuitionistically valid and invalid. By selecting the appropriate members of these
classes, namely those intuitionistically true with complexity of n=3, we can guar-
antee both termination of the ITAUT rule and a significant enough run time to
be profiled. The results of running these tests are shown in Table 1.

Table 1. Comparative Performance of Related Provers

Class Prover Time (sec)

de Bruijn
Primitive HaskHOL 13237.59
HaskHOL 16.124
HOL Light 10.932

Pigeon Hole
Primitive HaskHOL 146.014
HaskHOL 0.117
HOL Light 0.104

N-Contractions
Primitive HaskHOL 161.960
HaskHOL 0.228
HOL Light 0.187

Big Natural Deductions
Primitive HaskHOL 24.318
HaskHOL 0.00235
HOL Light 0.0374

Korn and Krietz
Primitive HaskHOL 61.062
HaskHOL 0.141
HOL Light 0.137

Equivalences
Primitive HaskHOL 0.578
HaskHOL 0.00127
HOL Light 0.0202

All results were gathered on the same machine1 averaging five executions of
each test. Primitive HaskHOL and HaskHOL were tested using the same frame-
work built using the latest Platform Haskell [2] and Criterion benchmarking
library [20] releases. HOL Light was tested less rigorously, using its built in time

function.
In all cases, the improvement in run-time performance from Primitive HaskHOL

to HaskHOL was significant. For the de Bruijn test case, the application of
compile-time proof shaved more than three and a half hours off of the run-time,
providing the most impressive reduction in terms of absolute time. In terms of
relative time, performance increased anywhere from 433 times, in the Korn and
Krietz test case, to a staggering 10348 times, in the big natural deductions test
case. Furthermore, in all cases the performance of HaskHOL was brought within

1 2.2 GHz Core 2 Duo, 4 GB 667 MHz DDR2 SDRam, OSX 10.7.2, GHC 7.0.4, OCaml
3.11.1

12 Chasing Sound, Efficient Proof with a Monadic, HOL System

the same order of magnitude as HOL Light, even surpassing it in two instances:
equivalences and big natural deductions. That being said, given the short run
times and potentially different overheads for the varying test frameworks, it’s
impossible to make the claim that HaskHOL is as fast, or faster than, HOL
Light. However, at least for these classes of problems, it is not an unreasonable
claim to state that HaskHOL’s performance is now at a level where its speed
alone is not enough to deter use in a real world application.

8 Related Work

As mentioned in the introduction, the goal of HaskHOL is to investigate a new
style of implementation for HOL systems with the aim of increasing trustwor-
thiness. HOL Zero is another relatively new member of the HOL theorem prover
family who shares that goal [4]. Like the more traditional members of the family
tree, HOL Zero still relies pervasively on side effects for its implementation. It
also differs from HaskHOL in that it is not trying to position itself as a gen-
eral purpose theorem prover, but rather as a proof checker used to confirm the
validity of proofs from other systems. The HOL Zero project certainly appears
to have merit, especially given that it’s already been used to identify a num-
ber of unsoundness issues in prover implementations. Interestingly enough, the
majority of these issues seem to have their roots in the use of OCaml as an im-
plementation language, perhaps further motivating the HaskHOL work, if only
for its choice of a different implementation language.

Outside of the world of HOL, there has recently been a focus on improv-
ing trustworthiness of extensions to interactive theorem provers in general. In
2010 Matt Kaufmann, Konrad Slind, and Mike Gordon organized a workshop to
discuss just this topic [3]. Topics at this workshop ranged from foundations of
trust in existing proof systems to how to integrate external tools with provers
in a trusted way. Of the work presented, Slind’s and Natarajan Shankar’s talks
are perhaps the most relevant because they focus on the notions of kernels of
truth and extending those kernels following the LCF style. Ideally, the work in
this paper can be reduced to the minimum size and be presented as part of a
monadic HOL kernel, following from the concepts of these talks.

Using well-founded techniques to implement a proof system is obviously a
great idea, however, the trustworthiness of the system will always be depen-
dent on the implementation being faithful to the authors’ intentions. In short,
you must be able to reason about the correctness of your code. For many peo-
ple, the appeal of functional programming is that it is relatively easy to reason
about equationally, such that a path from problem specification to solution can
be shown to be correct [16]. Unfortunately, a lot of that ease disappears when
discussing functional code that relies on side effects. Recent work has been com-
pleted to correct that issue for pure functional programs that frame effectful
computations with monads [10]. While not targeted at increasing the trustwor-
thiness at theorem provers directly, this work potentially opens the door to doing
so for any provers written in a monadic style.

Chasing Sound, Efficient Proof with a Monadic, HOL System 13

9 Conclusions and Future Work

First, at this point in time, the protection mechanism described in this paper
works only for theorems; it can, and should, be extended to support terms as
well. There are two possible ways to do so: by making the current methods and
types polymorphic via a type family, or by creating new methods specifically for
terms. Each approach has its own advantages. If a polymorphic implementation
is selected, users only have to learn one set of methods, making the entire process
familiar and approachable. If a separate implementation is selected, it opens up
the protected types for terms to reify more information than just what context
they are valid under. One possible example would be tracking the free variables
in a term, such that an error could be thrown if they are redefined as constants
later on.

The other realm to explore is to see just how much more of the prover can be
lifted into the type system via the theory type classes. Currently these classes are
empty, but it’s not a stretch to consider using them to hold theory specific context
information. Alternatively, they could act as superclasses for type classes that
carry more general information. In either case, the goal would be to eliminate
the need to use the State monad, at least for pre-constructed theories, or at
the very least minimize the amount of information it carries. This would greatly
reduce the memory footprint required to run HaskHOL proofs and would lead
to increases in performance across the board, especially for any computations
that require frequent backtracking.

The goal of this work was to provide evidence that a pure, monadic imple-
mentation of a HOL system was not only viable, but could potentially match
the performance of a side-effectful implementation. With the results presented
in Section 7 we feel we have accomplished this. Furthermore, we feel that we’ve
made a strong case that GHC’s type extensions are a good mechanism for in-
creasing trustworthiness by lifting aspects of a systems soundness to the type
level where they can be checked statically. While the work presented in this pa-
per is a rough first step at best, we hope it will inspire others to travel down the
same investigative path with us.

References

1. The Glasgow Haskell Compiler. Website:. http://haskell.org/ghc/.
2. The haskell platform. Website:. http://hackage.haskell.org/platform/.
3. Workshop on trusted extensions of interactive theorem provers. Website:.

http://www.cs.utexas.edu/ kaufmann/itp-trusted-extensions-aug-2010/.
4. Mark Adams. Introducing hol zero - (extended abstract). In Fukuda et al. [9],

pages 142–143.
5. Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors. Proceeding

of the 16th ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011. ACM, 2011.

6. James Cheney and Ralf Hinze. Phantom types, 2003.
7. Daniel de Rauglaudre. Camlp5. Website:. http://cristal.inria.fr/ ddr/camlp5/.

14 Chasing Sound, Efficient Proof with a Monadic, HOL System

8. Roy Dyckhoff. Some benchmark formulae for intuitionistic propositional logic.
Website:. http://www.cs.st-andrews.ac.uk/ rd/logic/marks.html.

9. Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama,
editors. Mathematical Software - ICMS 2010, Third International Congress on
Mathematical Software, Kobe, Japan, September 13-17, 2010. Proceedings, volume
6327 of Lecture Notes in Computer Science. Springer, 2010.

10. Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning.
In Chakravarty et al. [5], pages 2–14.

11. Andy Gill. A haskell hosted dsl for writing transformation systems. In IFIP
Working Conference on Domain Specific Languages, 07/2009 2009.

12. Mike Gordon. From lcf to hol: a short history. In Proof, Language, and Interaction,
pages 169–185. MIT Press, 2000.

13. John Harrison. Hol light: A tutorial introduction. In Proceedings of the First Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD96),
volume 1166 of Lecture Notes in Computer Science, pages 265–269. Springer-
Verlag, 1996.

14. Paul Hudak. Building domain-specific embedded languages. ACM COMPUTING
SURVEYS, 28, 1996.

15. Paul Hudak. Modular domain specific languages and tools. In in Proceedings of
Fifth International Conference on Software Reuse, pages 134–142. IEEE Computer
Society Press, 1998.

16. Graham Hutton. The countdown problem. J. Funct. Program., 12(6):609–616,
2002.

17. Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. The ocaml system release 3.12. Website:.
http://caml.inria.fr/pub/docs/manual-ocaml/index.html.

18. Simon Marlow. Haskell 2010 language report.
19. Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a proof

assistant for higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.
20. Bryan O’Sullivan. Criterion, a new benchmarking library for haskell. Website:.

http://www.serpentine.com/blog/2009/09/29/criterion-a-new-benchmarking-
library-for-haskell/.

21. Thomas Raths, Jens Otten, and Christoph Kreitz. The iltp problem library for
intuitionistic logic, release v1.1. Journal of Automated Reasoning.

22. Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell.
In In Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 1–16. ACM,
2002.

23. Konrad Slind. Trusted extensions of interactive theorem provers: Workshop sum-
mary. Website:. http://www.cs.utexas.edu/ kaufmann/itp-trusted-extensions-aug-
2010/summary/summary.pdf.

24. Konrad Slind and Michael Norrish. A brief overview of hol4. In Proceedings of
the 21st International Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’08, pages 28–32, Berlin, Heidelberg, 2008. Springer-Verlag.

25. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

26. Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436, 2008.

