
An ICFP Pearl Submission

Protect and Serve
Policing Your Monadic Computations

Evan Austin Perry Alexander
The University of Kansas

Information and Telecommunication Technology Center
2335 Irving Hill Rd, Lawrence, KS 66045
ecaustin@ittc.ku.edu/alex@ittc.ku.edu

Abstract
Pure, functional programs that are structured with monads can fre-
quently run slower than comparable impure implementations due to
repeated evaluations of intermediate monadic computations. When
these computations are the dominating factor in the time complex-
ity of a program this slowdown quickly changes from being an
annoyance to a serious problem. In this paper we identify a class
of monadic computations that exposes a methodology for safely
forcing evaluation in a way that can be used to mimic impure lan-
guages’ inlining of effectful expressions. We demonstrate the ap-
plication of this technique in the HaskHOL theorem prover where
it is used to police the soundness of compile-time proof.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.2.4 [Software/Program Verification]:
Formal methods

General Terms Languages, Verification

Keywords Haskell, monads, Higher-Order Logic, HaskHOL

1. Introduction
If Jerry Seinfeld ever did a bit about functional programming, he’d
probably open with the line, “What’s the deal with monads?” While
it’s questionable if even a master comedian could pay off that setup,
we can take solace in the fact that there’s at least a number of
serious answers to the question; among the most popular – monads
provide a mechanism for simulating side-effects in pure languages.
Take the following snippets of code as an example:

(* OCaml example using global references *)
let state = ref 0;;
let x = !state > 0;;
let comp =

let x1 = x
and x2 = state := !state + 1; x in

(x1 , x2);;

[Copyright notice will appear here once ’preprint’ option is removed.]

{- Haskell example using State monad -}
x :: State Integer Bool
x = do val <- get

return (val > 0)

comp :: (Bool , Bool)
comp = flip evalState 0 $

do x1 <- x
x2 <- modify (+ 1) >> x
return (x1, x2)

To the left, we have a piece of OCaml code that performs a
simple comparison against the value of a global reference, both
before and after it is incremented. Above, we have a Haskell version
that utilizes the State monad to simulate the same behavior. Or
does it? If we run both programs, OCaml returns (false, false)

and Haskell returns (False, True). So what’s going on?
In short, OCaml is evaluating and inlining x as it would any

other expression, regardless of the fact that it is side-effectful. The
result is that the value of x in the binding for x2 is calculated before
the state is incremented, giving us the unexpected, but technically
correct, behavior we observed. So why is this important, aside
from reminding us to be careful about how we use languages with
side-effects? The answer is that sometimes we want to mimic this
impure behavior in a pure language.

To demonstrate this point, we slightly modify the previous
Haskell snippet:
y :: State Integer Integer
y = do val <- get

return (fib val)

comp2 :: (Integer , Integer)
comp2 = flip evalState 50 $

do y1 <- y
y2 <- y
return (y1, y2)

Two things are important about this change: a) y is now the domi-
nant factor in the time complexity of our program and b) the state
of the computation does not change between the evaluations of y.
Knowing this, it is our hope that the compiler will optimize the pro-
gram by performing an inlining operation similar to what was seen
in the OCaml example. It doesn’t, though, and the reason it doesn’t
is a good one – in general, the desired program transformation is
not sound.

That leaves us with two basic options. We could utilize GHC
Haskell’s rewrite engine to encode program or computation specific
optimizations. Alternatively, we could manually refactor the code
to evaluate complex, but constant, computations before they are
used. Our claim, though, is that for large systems both of these
techniques make it increasingly difficult to prove that the resultant

Protect and Serve 1 2014/12/31

program is correct and functionally equivalent to the original. In
this paper, rather than trying to provide a new, general optimization
strategy, we focus on identifying a class of monadic computations
for which the correctness of a refactoring approach can be much
more easily guaranteed.

We introduce this class of computations in Section 2, explaining
their most important property with an example involving a modified
State monad. The next two sections demonstrate how we guarantee
the safety of our transformation, with the titular protect and serve

methods being introduced at the end of Section 4. We then discuss
a non-trivial application of these techniques in Section 5 where
they’re used to support compile-time operations in a Higher-Order
Logic (HOL) proof system. For those interested in the system
specific details, Section 6 shows the implementation of protect

and serve in the HaskHOL theorem prover. Finally, we close with
a discussion section where we expound upon some open questions
and concerns lingering in our minds.

2. The Monotonic State Monad
The chief requirement for any optimization strategy, including our
attempt to mimic an inlining transformation for monadic code,
should be that it is behavior preserving. Specifically, we want to
be sure that we only lift evaluated computations back into the
monad when they’re in a context where the value of the resultant
binding would be equivalent to a non-optimized version. By that
definition, our first example is a poor target for optimization while
our second example is a good one. It is worth pointing out, though,
that the syntax and types of both examples are nearly identical. This
leaves little information to indicate that a computation is suitable
for optimization outside of the programmer’s own intuition. This
is the basis of our main argument against the manual refactoring
approach; mixing complex systems and programmers’ intuitions is
an excellent recipe for bugs.

In the specific case of the State monad, a lot of what clouds
our decision making is that it is impossible to quantify a general
relationship between the states of a computation. This is due to
there being only one restriction on the non-proper put morphism
of the MonadState class: the new state value must be the same type
as the old state value; aside from that, anything goes. Within the
body of comp in our first example, the call to modify (+ 1) could
have just as easily been a call to a computation of unknown or
undeterminable behavior. Furthermore, x itself could have been a
state modifying computation, a point that we’ll touch on in the next
section.

To solve this problem, we present an alternative implementation
of the State monad which we have dubbed the monotonic state
monad, or MonoState:

class (Enum s, Monad m) =>
MonadMonoState s m | m -> s where

monoGet :: m s
monoSucc :: m ()

newtype MonoState s a =
MonoState { runMonoState :: s -> (a,s) }

instance Monad (MonoState s) where
return x = MonoState $ \s -> (x,s)
m >>= k = MonoState $ \s ->

let (x, s’) = runMonoState m s in
runMonoState (k x) s’

instance Enum s =>
MonadMonoState s (MonoState s) where

monoGet = MonoState $ \s -> (s, s)
monoSucc = MonoState $ \s -> ((), succ s)

Note that the only difference between MonoState and State is that
put has been replaced with monoSucc. We rely on the Enum class
to implement this new method such that the only possible state
modifying computations consist of one or more calls to succ. With
this restriction, its trivial to show that the states of any MonoState

computation are monotonically increasing during evaluation.
With this relationship in place, we can begin to guarantee the

sound reuse of evaluated computations provided that they were
constructed with the intention of leveraging our monad’s mono-
tonicity principle. For example, a computation that performs an
equality test on the value of the state would not be fitting as it re-
quires constancy of the state, a relationship that monotonicity is too
weak to guarantee. However, a computation that performs an order-
ing test on the value of the state would be a good choice as there
always exists a starting value for our state that will make such a
computation constant.

Let’s reimplement our first example with this concept in mind:

x’ :: Bool
x’ = flip evalMonoState 1 $

do val <- monoGet
return (val > 0)

comp ’ :: (Bool , Bool)
comp ’ = flip evalMonoState 0 $

do x1 <- return x’
x2 <- monoSucc >> return x’
return (x1, x2)

Note that, as its return value would imply, the computation x’

becomes constant for all state values greater than zero. Therefore,
we pick a satisfying state to evaluate x’ with and lift it back into
the main computation with return. In this way we preserve the
overall shape and type of comp’ while gaining the optimization
we’re looking for.

The challenge now shifts to making sure that the state used
to evaluate the overall computation also satisfies the condition we
used to pick the optimizing state. Unfortunately, we can see that in
this case it does not. The good news, though, is that this problem
is relatively easy to solve in general. This is precisely the purpose
of the protect and serve functions that have been alluded to up
to this point. The policing that the subtitle refers to is the checking
and rechecking of a computation’s starting value against its opti-
mization condition. More details regarding the implementation of
these functions will be discussed in Section 4.

3. The Tagged State Monad
Before we discuss the details of protect and serve, we stop to
investigate a brief aside from the previous section. Recall that we
mentioned a potential issue when the computation to be optimized
is itself state-modifying. If a computation has an effect that would
influence the execution of the rest of the program we don’t want
to make it constant as we would lose any repetitions of said effect.
However, some effects, like the retrieval of global state via get, are
benign outside of the context in which they’re used. The first step,
therefore, is to identify which effects we should be concerned about
and which we can safely ignore.

For the sake of discussion, we will refer to the set of effects that
have the potential to leave a lasting impression as active and the
rest as passive. Each monad’s unique behavior, and thus its set of
possible effects, is defined by an interface that is formed from the
collection of its primitive, non-proper morphisms. In the case of the
State monad, we have two such methods: get, containing a passive
effect, and put, containing an active effect. If we classify these
primitive computations we can then infer the correct classification
for any more complex computations built from them.

Protect and Serve 2 2014/12/31

When tagging effects with their classification, ideally we’d like
to able to achieve two things. First, we want to be able to check
the tag statically. Second, we don’t want the tag to change the
behavior of the underlying effect. The easiest way we’ve found
to satisfy both of these goals is to introduce the tag at the type
level by wrapping the target monad with a newtype containing a
phantom type variable [2]. We demonstrate this below with yet
another modification of the State monad, the tagged state monad:
data Passive
data Active

newtype TagState tag s a = Tag (State s a)
deriving Monad

tagGet :: TagState tag s s
tagGet = Tag get

tagPut :: s -> TagState Active s ()
tagPut = Tag . put

In the above definition of TagState, tag is the phantom type
variable used to carry the effect classification. This variable is
inhabited by one of two empty data declarations, Passive or Active
. All primitive morphisms containing active effects have aliases
that tag them as such with the remaining morphism aliases left
polymorphic. This allows us to combine elements from either set,
such as in State’s derived method modify, with the type checker
inferring the Active tag only when it’s necessary. The Passive

tag, therefore, is only used in places where we want to explicitly
exclude the use of active effects.

If we use this technique to guide the evaluation of monadic
computations we should take note that we can only infer passivity
from the top down. In other words, top-level computations can
know that the entirety of their body is passive, but intermediate
computations cannot attest to the classification of the context they
will used in if they’re left polymorphic. A reimplemented version
of our second example demonstrates this notion well:
evalPassive :: TagState Passive s a -> s -> a
evalPassive (Tag m) = evalState m

y’ :: TagState tag Integer Integer
y’ = do val <- tagGet

return (fib val)

comp2 ’ :: (Integer , Integer)
comp2 ’ = flip evalPassive 2 $

do y <- y’
y <- y’
return (x1 , x2)

comp2b ’ :: TagState Active Integer
(Integer , Integer)

comp2b ’ = do x1 <- y’
tagPut x1
x2 <- y’
return (x1, x2)

In the above code we have left y’ polymorphic such that it can be
used in a passive, top-level computation, comp2’, and an active one,
comp2b’. Either comp2’ or comp2b’ can make statements about their
classification relative to the entire code base but, unfortunately, y’
cannot.

To further this point, we have defined an alias to evalState,
evalPassive, that allows the evaluation of passive computations
only. While it would be possible to evaluate y’ with evalPassive,
it would result in incorrect behavior should we try and lift the result
back into comp2b’. Regrettably, there’s no way for the TagState

monad to catch a case like this. It can be used to prevent the evalua-
tion of comp2b’, though, with a compile-time error documenting the

type mismatch between Active and Passive. For that reason, this
technique is best applied in a defensive manner to guard against the
accidental evaluation of an active computation.

4. The Sealed State Monad
Up to this point, we have identified a class of monadic computa-
tions that we’d like to optimize as well as a strategy and technique
for doing so in a safe way. The remaining half of the problem left
to solve is how to guarantee that this optimization is only applied
when it results in a sound transformation. Recall from Section 2
that this is done by checking that the starting value used to evaluate
a top-level computation satisfies the optimization conditions of all
of its intermediate computations.

Our explanation starts with the simplest possible case, optimiza-
tion conditions with only one satisfying value. The check, there-
fore, becomes a direct comparison between the values used to eval-
uate computations. Just as in the previous section, phantom type
variables are used to tag these values with the information neces-
sary to compare them. Because we need this information to persist
after evaluation, though, simply tagging the monad type itself is not
enough; we must also tag results of evaluations with the value used
to produce them.

One final modification of the State monad, the sealed state
monad, is shown below:

newtype Env lbl s = Env s
newtype Res lbl a = Res a

seal :: State (Env lbl s) a -> (Env lbl s) ->
Res lbl a

seal m = Res . evalState m

unseal :: Res lbl a -> State (Env lbl s) a
unseal (Res a) = return a

Modification is perhaps a misnomer; the seal and unseal meth-
ods are probably better thought of as enhancements to the State

monad. Their term level functionality is relatively basic, as they act
primarily as a way to box and unbox results with the newtype wrap-
per Res. The real heavy lifting is done in the type level, where these
methods carry the phantom type variable lbl is from computation
to result and vice versa.

The trick to this approach is that we need a type level reification
of the values we want to compare. In all of the above examples,
we’ve been dealing with positive integers, so we rely on a standard
type-level representation of naturals:

data Zero
data Succ n

zero :: Res Zero ()
zero = seal (return ()) $ Env 0

one :: Res (Succ Zero) ()
one = seal (return ()) $ Env 1

onesOnly :: State (Env (Succ Zero) ()) ()
onesOnly =

do x <- unseal zero -- type error
return x

We have defined two intermediate computations above that have
both had their results sealed. As the names would imply, zero

has been sealed with the starting state 0 and one has been sealed
with the starting state 1. The actual comparison of starting values
occurs when results are unsealed in a top-level computation. A type
mismatch error will be thrown when unsealing zero in onesOnly

due to its explicit annotation of requiring a starting state of 1.

Protect and Serve 3 2014/12/31

More complicated optimization conditions can be checked pro-
vided that they can also be reified to the type level. Given that we
want to accept any satisfying value, we use type classes with care-
fully defined instances to provide the necessary level of polymor-
phism:

class GTZ a
instance GTZ (Succ n)

one ’ :: GTZ n => Res n ()
one ’ = seal (return ()) $ Env 1

noZeros ’ :: State (Env (Succ Zero) ()) ()
noZeros ’ =

do x <- unseal one ’ -- type ok
return x

Above we have introduced the condition (val > 0) as the type
class GTZ. We have also defined an instance of this class that sat-
isfies any tag constructed with a Succ data type on the outermost
level, matching the inductive representation of naturals with values
of 1 or greater. If we use this class to annotate a polymorphic type
for a result it gives us the ability to seal and unseal with different
values provided that both of their tags have instances of the class.

The last step in reaching our desired pair of methods, protect
and serve, is to separate the acts of boxing and evaluation in seal:

seal ’ :: State (Env lbl s) a -> (Env lbl s) ->
Res lbl a

seal ’ m s = protect s $ evalState m s

protect :: Env lbl s -> a -> Res lbl a
protect _ = Res

serve :: Res lbl a -> State (Env lbl s) a
serve (Res a) = return a

This separation motivates our decision to tag the state values di-
rectly rather than having the tag in the monad type; it allows for the
flexibility of protecting pure values generated from non-monadic
sources. It also allows for inspecting and observing a monadic re-
sult at its original type between evaluation and protecting, some-
thing that seal prevented. Finally, we pair this separation with re-
naming of unseal to serve to create the corniest police pun since
CHiPs went off the air.

5. Protecting HOL and Serving the Proof
The HOL proof system has been around since the late 1980s [3]. In
that time it has inspired a number of direct descendants and close
relatives including HOL Light, HOL4, HOL Omega, Isabelle/HOL,
PVS, and many others. We are currently trying to introduce our own
branch to that family tree with HaskHOL, a HOL theorem prover
implemented as an embedded domain specific language (DSL) in
Haskell [1]. Like most DSLs, HaskHOL uses a monad to structure
its computations; in this case with the aptly named HOL monad. This
is a break from the HOL tradition, though, where proof systems
leverage the effectful features of their implementation language,
usually a derivative of the ML language.

This has created an issue for HaskHOL analogous to the one
framed in the introduction section. There are a number of features
in a HOL system, such as proof search tactics, that may cause
the same theorem to be called upon hundreds or thousands of
times in a single proof. While the other provers are able to get
by with a ”prove once” methodology, HaskHOL and its monadic
implementation style must pay the price of reevaluating a theorem
every time it is used. For that reason we have targeted it as a
potential application for the protect and serve technique.

The last three sections have each identified a major factor to
be used when deciding if a monadic computation is a suitable
candidate for our optimization:

• The values of the monad’s parameter type must form a mono-
tonic relationship during evaluation.

• The primitive effects of the monad must all be classifiable as
active or passive.

• The values of the monad’s parameter type and any optimizing
conditions must all have an accurate type level reification.

To understand why HaskHOL’s HOL monad satisfies all of the above
properties, we must understand the LCF implementation style that
is at the heart of all HOL systems.

The basic idea behind the LCF style is that a proof system starts
with a small, trusted logical kernel from which more complex fea-
tures can be bootstrapped. In order to do this, a prover maintains the
notion of a current working theory, a collection of all knowledge
introduced to the system at that point in time. The key to main-
taining soundness with a bootstrapping approach is that knowledge
can only ever be added to this theory, never removed. Given this,
we can easily show that the stateful portion of the HOL monad used
to model the current working theory is monotonically increasing.

Because the construction of the current working theory is so
carefully controlled, it makes classifying the primitive morphisms
of the HOL monad fairly easy. We tag any method that extends the
current working theory as Theory, a more fitting version of Active
for this application, and use the Proof tag to enforce passive,

proof computations. It should be pointed out, though, that there
are a number of methods that fall in a grey area between these
classifications. The methods for turning debugging on and off, for
example, do so by modifying the state of the HOL monad which
technically makes them active effects. We choose to classify them
as passive, though, since they only affect the intermediate output
presented to the user and not the proofs themselves. This decision
was made in an effort to avoid overcomplicating the system with
safety, as we believe there’s no point in designing a bulletproof car
if it ends up too heavy to drive.

The LCF design also enables a straightforward method for as-
signing type level tags to values of the current working theory. Be-
cause it can grow quite large, the current working theory is fre-
quently check pointed at key places. All of the expressions required
to build the theory to that point are gathered into a single module,
along with any relevant theorems, rules, or other items, which is
labeled to indicate the logic or feature that it defines. For exam-
ple, the “Bool” module introduces basic, propositional logic to the
proof system. In our system, these labels are converted directly to
data types so that they can be used in conjunction with protect and
serve.

As we mentioned in the introduction, our desired application
of protect and serve in HaskHOL is to support compile-time
operations. The idea of performing computations at compile-time is
not itself a novel idea, as many HOL systems already include either
a pre-processor or quasi-quoter that allows users to write logical
terms in a more human readable form. The difference is that these
systems are fairly cavalier in the way they use these terms, rarely
if ever checking that the theory used to parse them agrees with the
current working theory.

The protect and serve technique originated as a way to solve
this problem. By signing quasi-quoted terms with the theory used to
parse them we had a way to guarantee their sound reuse. While im-
plementing this functionality we realized that it was a very robust
approach with a number of other potential applications within the
system. We have since added methods to extract and reuse knowl-
edge from theories and evaluate proof computations at compile

Protect and Serve 4 2014/12/31

time, all of which are policed by protect and serve. The result is a
system that has a lightweight feel, much like the system that orig-
inally inspired HaskHOL, HOL Light [4], while maintaining the
efficiency of a more complex, pre-compiled system, like HOL4 [6].

6. Compile-Time Proof with HaskHOL
At the heart of HaskHOL is the HOL monad, a flattened stack of
State and IO:

newtype HOL cls thry a =
HOL { runHOLCtxt :: HOLContext thry ->

IO (a, HOLContext thry) }

This combination allows us to simulate the stateful nature of a HOL
system’s current working theory while also providing basic excep-
tion handling and message printing capabilities. The HOL type is
parameterized by three type variables: cls, a phantom type vari-
able used to classify the passivity of a computation’s effects, thry,
a (almost) phantom type variable used to label a computation’s as-
sociated theory, and a, the return type of a computation.

The details of the state type, HOLContext, are relatively uninter-
esting beyond noting that it is parameterized by the phantom type
variable that holds the theory label. Hence our parenthetical use
of the word almost in the last paragraph; we were just one layer
off. These labels are constructed by representing the linear module
structure found in many HOL systems as a type-level list of theory
types:

data BaseThry = BaseThry deriving Typeable
data ExtThry a b = ExtThry a b

deriving Typeable

-- Type for the Boolean Logic Theory Label
type BoolType = ExtThry BoolThry

(ExtThry EqualThry BaseThry)

Each theory label also has an associated type class that is used when
a computation needs to check that the theory has been loaded as part
of its optimization condition. This membership check is performed
via overlapping instances that traverse the list of theories, working
similarly to the elem list operation. The theory’s type class is also
used to assert any pre-requisite theories, giving a strict ordering to
how theories are loaded:

class EqualCtxt a => BoolCtxt a
instance EqualCtxt b =>

BoolCtxt (ExtThry BoolThry b)
instance BoolCtxt b => BoolCtxt (ExtThry a b)

For compile-time operations, we utilize Template Haskell [5]
to automatically annotate the correct optimization condition for a
computation. We do this by defining a type class, DerivedCtxt,
that explicitly links a theory label to the Name of its associated type
class. Because of the strict, linear ordering we established above,
we can safely select the type class of the head of our theory label
list as it represents the most recently loaded theory:

class DerivedCtxt a where
contextName :: a -> Name

instance DerivedCtxt BaseThry where
contextName _ = ’’BaseCtxt

instance DerivedCtxt a =>
DerivedCtxt (ExtThry a b) where

contextName _ = contextName (undefined :: a)

instance DerivedCtxt BoolThry where
contextName _ = ’’BoolCtxt

The last piece of the puzzle is to define HaskHOL’s specialized
versions of protect and serve. As we mentioned in the previous
section, these methods are used to protect a variety of types. We
want to differentiate between the wrapping constructors of each
type, so we elect to implement the policing mechanism as a type
family to achieve our desired level of polymorphism:

class Lift a => Protected a where
data PData a thry
protect :: HOLContext thry -> a ->

PData a thry
serve :: PData a thry -> HOL cls thry a
liftTy :: a -> Name
protLift :: PData a thry -> Q Exp

instance Protected Theorem where
data PData Theorem thry = PThm Theorem
protect _ = PThm
serve (PThm thm) = return thm
liftTy _ = ’’Theorem
protLift (PThm thm) =

conE ’PThm ‘appE ‘ lift thm

type PTheorem thry = PData Theorem thry

The two methods in the Protected type class that we have not dis-
cussed before, liftTy and protLift, are used to simplify the Tem-
plate Haskell wizardry behind automatically deriving the correct
type for an optimization condition.

The combination of the DerivedCtxt and Protected type
classes are all that we need to provide the basis for of our compile-
time operations. This foundation consists of just three major func-
tions:

buildThryType :: forall a thry.
(Protected a, DerivedCtxt thry) =>

PData a thry -> Type

liftProtectedExp :: forall a thry.
(Protected a, DerivedCtxt thry) =>

PData a thry -> Q Exp

liftProtected :: forall a thry.
(Protected a, DerivedCtxt thry) =>

String -> PData a thry -> Q [Dec]

The buildThryType function automatically derives the optimiza-
tion condition for a computation in the manner described in the
previous paragraphs. This type is then paired with a protected re-
sult and lifted into the source code at compile time via a Template
Haskell splice. This can be done either as an annotated expression,
built with liftProtectedExp, or a top level declaration, built with
liftProtected.

Shown below is the application of protect and liftProtected

in our compile-time proof operation:

proveCompileTime :: DerivedCtxt thry =>
HOLContext thry -> String ->
HOL Proof thry Theorem -> Q [Dec]

proveCompileTime ctx lbl th =
do thm <- runIO $

do putStr $ "proving: " ++ lbl
thm <- flip evalHOLCtxt ctx $

(turnDebugOn >> th)
putStrLn "... proved."
return thm

liftProtected lbl $ protect ctx thm

Protect and Serve 5 2014/12/31

-- Example specialization of proveCompileTime
proveBool :: String ->

HOL BoolType Proof Theorem ->
Q [Dec]

proveBool = proveCompileTime ctxtBool

In HaskHOL, we tend to specialize proveCompileTime for any
library that contains a check pointed theory. We find that this
reduces syntactic burden and helps to clarify our intent in files that
have a large number of theorems constructed at compile time. The
function proveBool is one such specialization for the boolean logic
library.

-- Example splice from the Boolean library
proveBool "thmTRUTH" $

do lth <- ruleSYM =<< serve defT
rth <- liftM primREFL $

toHT [str| \p:bool. p |]
tryEither $ primEQ_MP lth rth

The splice shown in the code above, thmTRUTH, produces a very
simple theorem in HOL, |- T. Put simply, this theorem states that
the truth term, T, is always true. Obviously such a fundamental
theorem will be called on numerous times in the course of a proof,
hence our desire to mimic a ”prove once” evaluation style.

Note that within the body of thmTRUTH we see a use of protect
’s counterpart, serve, to lift the value defT into the proof. This
value contains the theorem that defines T and was protected after
being extracted from the boolean theory, ctxtBool, elsewhere in
the library. This is a common pattern in HaskHOL libraries as
previous knowledge is frequently used in the construction of new
knowledge and theorems. The result of this chain of serves is a top-
level computation that infers an optimization condition requiring
multiple libraries to be loaded, giving you an exact representation
of what logic is required in order complete a proof, something most
other systems don’t provide.

7. Discussion
From a design standpoint we are exceptionally happy with the
way that protect and serve turned out. However, its practical
application in HaskHOL leaves a few things to be desired. Our first
complaint is that automatically deriving optimization conditions
currently requires what we consider to be a ridiculous amount of
boilerplate code. Ultimately, it should be a very straight forward
process, but we’re forced to simulate simple list operations at the
type level with a mess of overlapping type class instances. These
instances can be constructed for new theories automatically with
Template Haskell, so it’s of minimal inconvenience for a user of
the system, but as an implementor of the system it’s somewhat of
pain to support and maintain.

We’re excited about the new data kind promotion work, though,
as it appears to be the perfect answer to our cries [7]. Our short
term goal is to rewrite the generation of optimization conditions
in HaskHOL such that they use actual type-level lists, rather than
simulated versions. It’s yet to be seen if this approach will generate
new issues of its own, but our hope is at the very least it will reduce
the overall number of auxiliary definitions currently required in the
core of HaskHOL.

Our second concern is less of a complaint and more of an ob-
servation; splicing HaskHOL theorems with Template Haskell can
take a really, really long time. This isn’t necessarily indicative of
a problem with either system, rather it’s just an unfortunate inter-
action between the two. Much of the lightweight feel of HaskHOL
that we mentioned earlier is thanks to an extremely primitive rep-
resentation of logical terms in the kernel of the system. This means
that theorems with large terms in their conclusions are actually the
application of hundreds of thousands of constructors.

When you add in the constructors needed to build an instance
of Template Haskell’s Exp data type and the complex type annota-
tions for the optimization conditions you end up with a nightmare
for GHC’s type checker. The result is that proofs that may evaluate
in a few seconds at run time can take several minutes to evaluate,
type check, and splice at compile time. We’re waiting with bated
breath for the introduction of the long-awaited update to Template
Haskell1 to see if the new approaches to typing splices alleviates
this problem at all. In the mean time, we remain happy and opti-
mistic about the system’s performance as is.

References
[1] HaskHOL. Website:, 2013. https://wiki.ittc.ku.edu/sldg_

wiki/index.php/HaskHOL.
[2] M. FLUET and R. PUCELLA. Phantom types and subtyping.

Journal of Functional Programming, 16:751–791, 10 2006. ISSN
1469-7653. URL http://journals.cambridge.org/article_
S0956796806006046.

[3] M. Gordon. From LCF to HOL: a short history. In Proof, Language,
and Interaction, pages 169–185. MIT Press, 2000.

[4] J. Harrison. HOL light: A tutorial introduction. In Proceedings of
the First International Conference on Formal Methods in Computer-
Aided Design (FMCAD96), volume 1166 of Lecture Notes in Computer
Science, pages 265–269. Springer-Verlag, 1996.

[5] T. Sheard and S. L. P. Jones. Template meta-programming for haskell.
SIGPLAN Notices, 37(12):60–75, 2002.

[6] K. Slind and M. Norrish. A brief overview of HOL4. In Proceedings of
the 21st International Conference on Theorem Proving in Higher Order
Logics, TPHOLs ’08, pages 28–32, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-71065-3. URL http://dx.doi.org/10.
1007/978-3-540-71067-7_6.

[7] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and
J. P. Magalhães. Giving Haskell a Promotion. In Proceedings of the
Seventh ACM SIGPLAN Workshop on Types in Languages Design and
Implementation, TLDI ’12, pages 53–66, Philadelphia, PA, USA, 2012.
ACM. ISBN 978-1-4503-1120-5.

1 http://hackage.haskell.org/trac/ghc/blog/Template%
20Haskell%20Proposal

Protect and Serve 6 2014/12/31

https://wiki.ittc.ku.edu/sldg_wiki/index.php/HaskHOL
https://wiki.ittc.ku.edu/sldg_wiki/index.php/HaskHOL
http://journals.cambridge.org/article_S0956796806006046
http://journals.cambridge.org/article_S0956796806006046
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://hackage.haskell.org/trac/ghc/blog/Template%20Haskell%20Proposal
http://hackage.haskell.org/trac/ghc/blog/Template%20Haskell%20Proposal

	Introduction
	The Monotonic State Monad
	The Tagged State Monad
	The Sealed State Monad
	Protecting HOL and Serving the Proof
	Compile-Time Proof with HaskHOL
	Discussion

