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Abstract
An oft-cited advantage of programming in a pure, functional lan-
guage is that guarantees of correctness can be made quite directly
via equational reasoning. Though this reasoning is in and of itself
a fairly simple process, attempts to mechanize its application typ-
ically rely on integrating with complex, external proof systems. It
is our belief that the burden of working with these systems pre-
cludes the average programmer from formally verifying properties
that they could otherwise informally demonstrate to be true. The
work in this paper discusses an alternative approach to program
verification – the integration of a lightweight proof system into the
GHC compiler pipeline via its plugin framework. A motivating ex-
ample is followed to demonstrate how the capabilities of this prover
can be used to easily verify properties of Haskell programs.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.2.4 [Software/Program Verification]:
Formal methods

General Terms Languages, Verification

Keywords Haskell, HaskHOL, HERMIT

1. Introduction
Among the most commonly cited advantages of working with
purely functional languages is that reasoning about program behav-
ior is significantly easier in the presence of referential transparency.
Expected behavior can be expressed by ascribing key pieces of
code with properties that collectively form a valid argument of an
implementation’s correctness. Much like the evaluation strategy of
the host language itself, these properties can be rewritten through
repeated substitution of function and data type definitions until they
are reduced into true or false statements. This is the essence of the
equational reasoning approach to program verification.

In Haskell, correctness properties are often self-introduced,
whether the programmer realizes it or not. As an example, the
de facto approach to structuring effectful computation in Haskell
relies on the Monad type class. The documentation for this class
includes three properties, inherited from the definition of mon-
ads found in category theory, that all Monad instances should obey.

[Copyright notice will appear here once ’preprint’ option is removed.]

{- The Monad Laws:
Left identity: return a >>= k == k a

Right identity: m >>= return == m

Associativity :
m >>= (\x -> k x >>= h) == (m >>= k) >>= h

-}
class Monad m where

(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Figure 1. The Monad Type Class

These properties, along with a minimal class signature, are shown
in Figure 1.

Though the trend is slowly changing, the majority of Monad in-
stances are implemented without verifying or even stating these
laws. Given that the laws double as rewrite rules in most compilers
for the language, this is obviously non-ideal for anyone concerned
with program correctness. It is our belief that the dearth of cor-
rectness proofs, especially for type class properties, is a matter of
inconvenience rather than impossibility; they can be, and should
be, verified. Continuing with our motivating example, a definition
of the Identity monad and a proof of its left identity law is shown
in Figure 2.

Verification of the monad laws for other instances proceed sim-
ilarly. The catch is that the effort required for an equational rea-
soning proof is directly proportional to the complexity of both the
proof obligation and its requisite definitions. The Identity monad
is intentionally targeted for the proof derivation in Figure 2 as it has
the simplest possible Monad instance. Conversely, the definition of
the computational monad of the HERMIT system discussed later
in this paper relies on nested record types, smart constructors, and
other monads. Attempting a paper proof with its definition, while
certainly possible, would be both time consuming and error prone.
This is of no surprise to anyone familiar with the motivations be-
hind mechanizing proof theory.

Ideally, the average programmer would be able to throw their
code over the wall to a formal reasoning tool that would assist them
with their proofs of correctness in the same transparent manner as
a type checker. Unfortunately, despite all of the benefits that the
functional paradigm provides, it does nothing to assuage a major
problem in software verification: marshaling knowledge between
implementation and verification environments is, more often than
not, just as complex and error prone as attempting proofs by hand.
Furthermore, once inside a verification environment, programmers
typically find themselves at the bottom of a steep learning curve
that only further dissuades them from formality; especially if their
intended goal is just to complete a one-off proof.
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data Identity a = Identity a

runIdentity :: Identity a -> a
runIdentity (Identity a) = a

instance Monad Identity where
return = Identity
m >>= k = k (runIdentity m)

Left Identity Law

return a >>= k = k a (1)

Rewrite with Definition of (>>=)

k (runIdentity (return a)) = k a (2)

Rewrite with Definition of return

k (runIdentity (Identity a)) = k a (3)

Rewrite with Definition of runIdentity

k a = k a (4)

By Reflexivity

True (5)

Figure 2. A Partial Verification of the Identity Monad

The consequence of these problems is that “easy” proofs are typi-
cally done either informally or not at all.

The formal verifications of functional programs that do exist are
spread among a diverse set of proof assistants, logics, and represen-
tation techniques; each with their own pros and cons. Focusing on
examples related to monads, proofs of the monad laws frequently
arise as ad hoc lemmas in larger efforts [7, 22]. The monads in these
verifications are “built to order”, such that it is difficult to restruc-
ture their proofs to be useful outside of their original context. In
other words, these proofs are not of immediate benefit to anyone
attempting to verify existing and unrelated implementations.

Brian Huffman has presented work that more generally for-
malizes Haskell type classes [10], including Monad, using Is-
abelle/HOLCF [16] and its Tycon library [11]. Unfortunately, by
the author’s own admission, portions of the presented technique
are impractical for widespread use. The domain-theoretic model of
Haskell’s type system is logically distant from what the average
functional programmer is familiar with and an advanced working
knowledge of the underlying proof system and logic is required for
the more complicated cases.

Huffman et. al’s early work [12] took place at a time before type
classes were common, first-class constructs of proof languages.
Since then, at least two popular proof systems, Coq [15] and Is-
abelle/HOL [17], have been extended with implementations of type
classes similar to Haskell’s [6, 21]. These systems can be used to
more clearly model and verify Monad instances; and in the case of
working with Isabelle/HOL, there even exists a tool to automate
the necessary translations from existing Haskell code [5]. However,
Coq and Isabelle are both large, complex systems that offer more
reasoning power than is necessary in most cases. Furthermore, they
can be overwhelming to work with for new users requiring signifi-
cant background experience to use effectively.

By instead working with a lightweight and approachable tool
that itself is implemented in Haskell, library authors would be
able to more easily integrate formal verification into their existing
workflows. In this paper, we present a novel approach to program
verification that depends on such a tool.

The primary goal of this work is to mitigate or eliminate as many
barriers to entry for formal reasoning as possible. Rather than work-
ing at the source level, as the previously discussed approaches do,
we instead target the intermediate representation of the Glasgow
Haskell Compiler (GHC) [4]. Using the compiler to desugar and
simplify definitions to a core syntax allows us to translate them di-
rectly to an analogous higher-order logic (HOL) that should feel
familiar to functional programmers.

By mechanizing this logic as a Haskell-embedded domain spe-
cific language (EDSL), we can entirely encapsulate the verification
effort within a GHC compiler plugin. This provides us not only
with the ease of integration and use that we desire, but as a sec-
ondary benefit we can replay verification results with the compiler
on demand.

The remainder of the paper is structured as follows:

• Section 2 serves as a brief introduction to the theorem prover
EDSL we will use to mechanize our proof efforts.

• Section 3 provides a high-level overview of GHC’s plugin ar-
chitecture and details the other major libraries critical to our
work.

• Section 4 presents an informal translation semantics from
GHC’s core data types to HOL, including the current limita-
tions of this translation.

• Finally, Section 5 works through an example to demonstrate the
verification process in practice.

2. Verifying Constructor Classes in HaskHOL
The verification workflow described at the end of the introduction is
predicated on the existence of a HOL proof system implemented in
Haskell. One such system, HaskHOL, has been under development
for the last several years [1]. Inspired collectively by HOL Light [8]
and two of its modifications/extensions, Stateless HOL [25] and
HOL2P [24], HaskHOL is a lightweight, monadic implementation
of a second-order polymorphic HOL [2]. This logic is capable of
representing a large subset of Haskell programs, including con-
structor classes such as Monad. We can demonstrate HaskHOL’s
applicability by using it to verify the introduction example.

Following from GHC’s intermediate representation of type
classes as dictionary-passing constructors, the Monad class is repre-
sented in HaskHOL as a constant term whose type is dictated by its
argument constructor and operations:

forall (m :: * -> *).
(forall a b. m a -> (a -> m b) -> m b) ->
(forall a. a -> m a) ->
Monad m

HaskHOL’s polymorphism is restricted in that universally quanti-
fied type variables may only be instantiated by “small” types, i.e.
types that are not themselves quantified. Additionally, type opera-
tors are distinct from regular types in the language such that they
also cannot be used to instantiate quantified type variables. This
leads to the construction of monads shown in Figure 31 where the
type operator variable to be instantiated by a type constructor, _M,
is left globally free.

1 A HaskHOL syntax cheat sheet:
’A - Small type variables
_M - Type operator variables
(\ / \\) - Term-level term/type abstraction
(! / !!) - Term-level, universal term/type quantification
[: ’A]- Term-level type application
$ - Type-level universal type quantification
’A _M - ML-Style, type-level type application
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MONAD
(bind : % ’A ’B. ’A _M -> (’A -> ’B _M) -> ’B _M)
(return : % ’A. ’A -> ’A _M) =

((!! ’A ’B.
! (a: ’A) (f:’A -> ’B _M).

bind [: ’A] [: ’B] (return [: ’A] a) f = f a) /\
(!! ’A.

! (m: ’A _M).
bind m return = m) /\

(!! ’A ’B ’C.
! (m: ’A _M) (f: ’A -> ’B _M) (g: ’B -> ’C _M).

bind (bind m f) g = bind m (\ x. bind (f x) g)))

Figure 3. The Construction of Monads in HaskHOL

prove
[str| MONAD

(\\ ’A ’B. \ m k. k (RunIdentity m))
Identity |] $

tacREWRITE [defMONAD] ‘_THEN ‘ tacCONJ ‘_THENL ‘
[ _REPEAT tacGEN_TY ‘_THEN ‘

tacREWRITE [defIdentity , defRunIdentity]
, tacCONJ ‘_THENL ‘

[ tacGEN_TY ‘_THEN ‘
tacMATCH_MP inductionIdentity ‘_THEN ‘
tacREWRITE [defIdentity , defRunIdentity]

, _REPEAT tacGEN_TY ‘_THEN ‘
tacACCEPT thmTRUTH

]
]

Figure 4. The Identity Monad and its HaskHOL Proof

The MONAD constant is the conjunction of the monad laws, trans-
lated to HOL propositions. This translation includes making type
abstractions and applications in the laws explicit, similar to how
the GHC rewrite system requires pattern variables to be explic-
itly bound in rules. The specific proof obligation for the Identity

instance can be achieved by supplying appropriate definitions for
bind and return. Assuming that Identity and RunIdentity are
constants in our working theory context, this produces the HOL
term shown in Figure 42

Included in Figure 4 is the proof tactic for this term. The term
is rewritten using the definition of the MONAD constant to bring the
instantiated monad laws into view. Each law is separated from the
rest via a conjunctive split (tacCONJ), its bound types are gener-
alized (tacGEN_TY), and the resultant subgoal is proved by rewrit-
ing (tacREWRITE). The rewriting step incorporates the provided list
of definitions with the standard set of rewrites, e.g. beta reduction.
Given that the definition of runIdentity depends on pattern match-
ing against the Identity constructor, proving the left-identity law
subgoal requires an extra step. We manually perform rule induc-
tion to handle pattern matching by invoking the primitive recursion
theorem for the Identity type via the tacMATCH_MP tactic.

This proof tactic may seem daunting to those unfamiliar with
HOL systems. However, it is simply a Haskell value that can be
manipulated in the same ways as any other Haskell value. Specif-
ically, we can abstract out the constant values that represent HOL
theorems and use tactic combinators to make the structure more
general. The function shown in Figure 5 will construct a proof tac-
tic that will work for most constructor class verifications, provided
that the proof obligation is derived following the above process.

2 The str quasi-quoter prepares a String for HaskHOL’s parser, notably
removing the need to escape special characters.

proveConsClass consDef indThm thms =
tacREWRITE [consDef] ‘_THEN ‘ _REPEAT
(_TRY (tacCONJ ‘_THEN ‘ _REPEAT tacGEN_TY)
‘_THEN ‘ _TRY (tacMATCH_MP indThm)
‘_THEN ‘ tacREWRITE thms)

proveIDMonad =
proveConsClass defMONAD inductionIdentity

[defIdentity , defRunIdentity]

Figure 5. A More General Tactic for Constructor Classes

A programmer only needs to be able to identify three pieces of
information to complete their proof:

1. The definitional theorem for the constructor class.

2. The recursion theorem to use for induction.

3. The list of additional theorems to use for rewriting.

For proofs not requiring induction, an undefined value can be sup-
plied for the recursion theorem to intentionally fail, and therefore
skip, that proof step. Proofs requiring more complicated induction
schemes, however, will require the user to modify the structure of
this tactic or develop a tactic of their own.

For now, we are operating under the simplifying assumption that
the items enumerated above are available as part of an existing the-
ory. We will explain this assumption in more detail in the following
sections of the paper, but it is primarily due to the immaturity of the
systems we are working with. The only item that needs to be con-
structed for a verification is the proof obligation itself. This obliga-
tion is a translation from the intermediate representation of a class
instance to HOL, where the instance type constructor is replaced
with the HOL constant for the class, e.g. MONAD in the example in
Figure 4. As mentioned previously, our intention is to automate this
translation as part of a compiler plugin.

3. The HERMIT with the KURE
Working at the core level of the compiler is beneficial for a number
of reasons. As was mentioned in the introduction, the primary
benefit is that the syntax we need to account for in our translation is
simpler and maps more directly to our target HOL term language.
We have also observed the following other benefits:

• The core syntax is extremely stable compared to the source
syntax.

• Terms are safely assumed to be well-typed and correctly con-
structed before translation.

• Type information is stored locally, simplifying translation.
• Integration with GHC, Cabal, and other system tools is signifi-

cantly easier.

The final point enumerated above, simplicity of integration, is
in large part thanks to GHC’s compiler plugin architecture. A GHC
plugin modifies the compilation phases of the compiler pipeline
with a function of type [CommandLineOption] -> [CoreToDo] ->

CoreM [CoreToDo]. In this signature, the abstract type CoreToDo

represents a compilation pass, such that a plugin author can add,
remove, modify, and reorder passes as they please by manipulating
the [CoreToDo] argument. Knowing this, we can easily make veri-
fication a part of the compilation process by inserting a compilation
pass of our own design into the pipeline at any point we desire.

The critical piece of any user-defined plugin is the function
it uses to interact with a module. This function carries the type
ModGuts -> CoreM ModGuts.
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Figure 6. The HERMIT Framework

Aptly named, the ModGuts data type stores all of the information
contained in the “guts” of the module currently being compiled.
There are a number of fields in the ModGuts type that a verification
plugin may be interested in, however, for this work we are primarily
concerned with the CoreProgram value stored in the mg_binds field.
As can be inferred from the name of the field, this data type holds
all the top-level bindings in a module, stored as a list of variable
and expression pairs. These expressions are values of the core type
CoreExpr that will be examined in more detail in Section 4.

Ultimately, we require a translation function of type CoreExpr

-> HOLTerm, where HOLTerm is HaskHOL’s abstract data type
for HOL terms. We could write this function directly using the
GhcPlugins module provided as part of the GHC API. How-
ever, browsing this module’s documentation3 makes it clear that
there would be a significant amount of integration work to do be-
fore translation could even be attempted. Instead, we rely on the
Haskell Equational Reasoning Model-to-Implementation Tunnel
(HERMIT) [3] to do most of the heavy lifting for us.

Originally built as a tool for interactively developing new opti-
mization passes, HERMIT has since evolved to serve as a gener-
alized framework for constructing new compilation passes of all
forms. Figure 6, courtesy of Farmer et al., shows the key com-
ponents of HERMIT [3]. At the root of HERMIT is the Kansas
University Rewrite Engine (KURE), an EDSL for strategic rewrit-
ing [20]. HERMIT specializes the primitive combinators of KURE
to provide generic traversals for GHC’s core data types, as indicated
by the “GHC Core Support” box in the aforementioned figure.

3 http://www.haskell.org/ghc/docs/latest/html/libraries/
ghc-7.8.4/GhcPlugins.html

These traversals are structured by KURE’s Transform data type
that abstractly models a transformation from type a to monadic
values from type m b, with a given context of type c:

data Transform c m a b =
Transform { applyT :: c -> a -> m b }

For HERMIT, Transform is specialized by the type synonym
type TransformH a b = Transform HermitC HermitM a b. The
HermitM monad is essentially GHC’s core monad, CoreM, aug-
mented with error handling as provided by KURE. There are ad-
ditional effects structured by HermitM, but they are not utilized by
this work.

The context for HERMIT transformations, HermitC, tracks all of
the bindings in a module from the top-level down. The context also
tracks the location inside of a module that a HERMIT computation
is manipulating or accessing. These locations are stored with the
digital equivalent of a trail of breadcrumbs that leads back to the
root of the module. These paths of crumbs are an abstraction, again
provided by KURE, that can also be used to dictate how to traverse
an expression for transformation or rewriting.

HERMIT provides a dictionary of navigations that can compute
a path to a target location in a module. The bindingOfT function,
shown below, returns the path to the first binding it encounters
whose variable satisfies a given predicate.

type LocalPathH = LocalPath Crumb

bindingOfT :: (Var -> Bool)
-> TransformH CoreTC LocalPathH

Note that bindingOfT is itself a transformation that converts the
constructors it encounters to their corresponding Crumbs. Given that
a path could traverse any type from ModGuts all the way down to
CoreExpr, HERMIT defines sum types that bundle entire data type
hierarchies together. The CoreTC type is the most inclusive of these
sum types.

When paired with the cmpString2Var function, bindingOfT

makes for a clean and concise way to target definitions of a given
name. For example, the following computation would apply a trans-
formation to the binding that carries the intermediate representation
of Identity’s Monad instance:

at (bindingOfT . cmpString2Var $ "$fMonadIdentity") $
query trans

The types of the at and query combinators constrain the possible
types of the transformation function, trans. Refining the statement
from earlier in this section, the translation function we require is
not of type CoreExpr -> HOLTerm, but rather TransformH CoreTC

HOLSum, where HOLSum is the sum of HaskHOL’s primitive types
that mirrors CoreTC.

For our purposes, we know that we will not be manipulating
any types above CoreExpr in the hierarchy. Provided we can write a
transformation of type TransformH CoreExp HOLTerm, we can use
KURE’s Injection class and HERMIT’s promotion combinators
to bridge the gap from CoreExpr to CoreTC. We demonstrate the
general technique for constructing such a transformation in HER-
MIT by focusing on a “dummy” translation of variables.

HERMIT’s combinator for transforming CoreExpr variables is
shown at the top of Figure 7. A Var is essentially a wrapper for
typed identifiers, capable of representing terms and types both. The
varT combinator lifts a transformation of Ids into a transformation
of CoreExprs that consist of a single variable occurrence. It unboxes
the Var value, applies the sub-transformation to its internal and
extends the working context with a Crumb to indicate that we are
now inside of a variable. The dummy transformation takes the name
of an Id and uses it to create a new, variable HOL term of an
arbitrary type.
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varT :: TransformH Id b
-> TransformH CoreExpr b

varT t = transform $ \ c -> \case
Var v -> applyT t (c @@ Var_Id) v
_ -> fail "not a variable."

dummy :: TransformH Id HOLSum
dummy = contextfreeT $ \ id -> Tm $

Tm $ mkVarType (name v) tyA
where name = pack . unqualified . varName

trans :: TransformH CoreExpr HOLSum
trans =

varT dummy
<+ appT trans trans (\ (Tm x) (Tm y) -> ...)

Figure 7. Transforming Vars.

When varT is applied to dummy, a transformation of the desired
type is produced. Note that the varT combinator will fail if pre-
sented with a CoreExpr value not constructed with Var. We can
handle the cases for other constructors by writing transformations
for them and then threading everything together with combinators
that handle the exceptions. The above example uses the (<+) com-
binator, the KURE equivalent of Alternative’s <|>. The actual im-
plementation of our translation function follows directly from the
informal semantics discussed in the following section.

4. GHC Core
The intermediate language of GHC is an implementation of System
F↑
C [26], an extension of System FC [23] that supports data type

promotion. System FC is itself is an extension of the the well
known System F [18] that supports type-level equalities through
coercion. Given that the foundational logic of HaskHOL is less
expressive than System F, and therefore any of its extensions, it
can only represent a subset of GHC’s core language. The following
is the list of assumptions we make about CoreExpr values which
collectively define the limitations of our system:

1. Types are simply kinded, i.e. ? or k1 → k2, and/or are other-
wise safe to ignore.

2. Reducing a type application results in a substitution or instanti-
ation that obeys the restrictions of HaskHOL’s polymorphism.

3. Casts are discharged or otherwise removed before translation,
e.g. newtypes are replaced with equivalent data definitions.

4. Binding groups can be reduced to a list of possibly self recur-
sive, but not mutually recursive, expressions.

5. All of the bindings in a group reside within a single module.

6. Constants of the language, primitives; literals; and user-defined
alike, all map to analogous constants in an existing HaskHOL
theory.

Assumptions 1 and 2 are due to limitations of HaskHOL’s type
system. Though there are HOL systems that can reason about
kinds [9], HaskHOL currently lacks that capability. As for the pre-
viously discussed restrictions of HaskHOL’s polymorphism, they
are in place to maintain consistency of its logic; something that is
critical for a proof system but not necessarily important for a type
system.

Assumption 3 is primarily due to our unfamiliarity with the
implementation of coercions in GHC. In practice, the coercion of
newtypes cited in the assumption list above is the only type cast we
have encountered in our, admittedly limited, testing.

data Type
= TyVarTy Id
| AppTy Type Type
| TyConApp TyCon [Type]
| FunTy Type Type
| ForAllTy Id Type

data CoreExpr
= Var Id
| App CoreExpr CoreExpr
| Lam Id CoreExpr
| Type Type

Figure 8. GHC’s Core – Simplified

It is our plan to iteratively develop this verification workflow,
adding features as we can, so our hope is that coercions will be
fully addressed by future work.

Assumption 4 is again due to a limitation of HaskHOL. Fol-
lowing from the logic of HOL Light that it is based on, HaskHOL
permits mutually recursive data types, but not mutually recursive
function definitions. Again, there are HOL systems that do have
this capability [14], but HaskHOL is not currently one of them.

Assumptions 5 and 6 are due to limitations and design choices
of HERMIT and the GHC plugin architecture. The only ModGuts

value available to a plugin is the value for the module currently be-
ing compiled. While there is likely a way to store these values while
compiling a sequence of modules, this technique would be infeasi-
ble for any code that depended on the base library or other libraries
where the source code was not immediately accessible. Addition-
ally, HERMIT does not currently provide combinators to transform
the TyCon values that store type definitions, so translating constants
would be supported for terms only without a sizable amount of ad-
ditional work. While these limitations may be addressed in the fu-
ture, for now we find it an acceptable compromise to depend on
HaskHOL’s definitions for constants.

A simplified view of GHC’s core data types is shown in Fig-
ure 8. The Cast, Lit, and LitTy constructors have been removed
following from our previously enumerated list of assumptions. The
Tick constructor has been removed as its primary purpose is anno-
tating information for profiling and debugging purposes, so it is not
relevant to our translation. Finally, the Case and Let constructors
have been removed as both map quite directly to meta-constructs
in HaskHOL’s term language. This makes their translations both
awkward to formalize and comparatively uninteresting.

A corresponding, simplified view of the primitive data types
of HaskHOL is shown in Figure 9. Constructors and constructor
fields that are not critical to our translation have been converted to
simpler types or removed entirely. This has mainly resulted in the
removal of types that facilitated HaskHOL’s semi-stateless features,
leaving behind a term language very similar to that of HOL2P.
Additionally, we have defined the HOLSum sum type that mirrors
HERMIT’s CoreTC type.

Figure 10 defines the predicate-based translations for the Id and
TyCon types. Term variables translate directly between language
and logic. As was mentioned in the assumptions above, when
translating type variables we discard their kinds, keeping just their
names. When translating type constructors, we map everything
to primitive type operators in HaskHOL, making sure to handle
the special case of the function type constructor at the time of
translation. Primitive type operators are used rather than variable
operators so that we can maintain the arity of types.

Figure 11 defines the translations for the constructors of the
Type data type. Translations not involving type application proceed
directly.
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data HOLSum
= Tm HOLTerm | Ty HOLType | TyOp TypeOp

data TypeOp
= TyOpVar String
| TyPrim String Int

data HOLType
= TyVar String
| TyApp TypeOp [HOLType]
| UType HOLType HOLType

data HOLTerm
= Var String HOLType
| Const String HOLType
| Comb HOLTerm HOLTerm
| Abs HOLTerm HOLTerm
| TyComb HOLTerm HOLType
| TyAbs HOLType HOLTerm

Figure 9. HaskHOL’s Primitive Types – Simplified

Id to HOLSum

varType id −→ ty

if(isId id) : x = Tm (V ar (varName id) ty)
else : x = Ty (TyV ar (varName id))

id −→ x

TyCon to TypeOp

if(isFunTyCon op) : x = TyPrim “fun′′ 2
else : x = TyPrim (tyConName op) (tyConArity op)

tyCon −→ x

Figure 10. Translating Ids and TyCons

Non-constructor type application translations depend on whether
the operator of the application is a type variable or another applica-
tion. In the case of a type variable, it is converted to a type operator
variable and a HOL type application is built. We use a variable
type operator variable rather than a primitive type operator for two
reasons. First, we do not know the right arity to give to the opera-
tor since we have erased kind information. Second, it makes type
substitutions performed when translating CoreExpr values slightly
easier.

Constructor type application translations depend on the length
of the argument type list. When passing a constructor as an argu-
ment to a type application, GHC will pair it with an empty type ar-
gument list in a TyConApp to satisfy the type of the CoreExpr Type

constructor. HaskHOL, however, does not permit partial applica-
tions of type operators, so must check to see if a type operator is
actually nullary or not before translating such applications. If the
operator is nullary then we build the appropriate HOL type appli-
cation, otherwise we just return the type operator itself. Note that
this requires adding an additional translation case for App constructs
to handle applying type operators.

Figure 12 defines the translations for the constructors of the
CoreExpr data type. The rules for translating Var and Type are
trivial. The rules for translating App and Lam values, however, are
fairly complex. Given that we are currently mapping all constants
to their equivalent values in HaskHOL, we do not need to translate
type classes or other dictionary values.

TyVarTy to HOLSum

id −→ id′

TyV arTy id −→ id′

AppTy to HOLSum

id −→ Ty (TyV ar x) ty −→ Ty ty′

AppTy (TyV arTy id) ty −→ Ty (TyApp (TyOpV ar x) [ty′])

ty1 −→ Ty (TyApp op tys) ty2 −→ Ty ty2′

AppTy ty1 ty2 −→ Ty (TyApp op (tys++ [ty2′]))

TyConApp to HOLSum

op −→ TyOp op′

if(arity op′ = 0) : x = Ty (TyApp op′ [])
else : x = TyOp op′

TyConApp op [] −→ x

op −→ TyOp op′ for each i ∈ n, tyi −→ Ty ty′
i

TyConApp op [ty1, ..., tyn] −→ Ty (TyApp op′ [ty′
1, ..., ty

′
n]

FunTy to HOLSum

ty1 −→ Ty ty1′ ty2 −→ Ty ty2′

FunTy ty1 ty2 −→ Ty (TyApp tyOpFun [ty1′, ty2′])

ForAllTy to HOLSum

id 7→ Ty id′ ty 7→ Ty ty′

ForallTy id ty −→ Ty (UType id′ ty′)

Figure 11. Translating Types

Each of these constructors, therefore, has a case that essentially
erases dictionary arguments or parameters accordingly, adjusting
types as needed.

We have additional cases in the rules for App to force evaluation
of type applications where possible. We do this primarily because
of the limitation of HaskHOL’s polymorphism that prevents the
binding of type operator variables. For example,

(x : forall _m. forall a b. _m a b) (->)

is an allowable term in GHC’s core language and will reduce to:

x : forall a b. a -> b

The HaskHOL equivalent,

(x : % _m. % ’a ’b. (a, b) _m) [: (->)]

is malformed for a number of reasons, though we can represent the
reduced term fine:

x : % ’a ’b. ’a -> ’b

While not necessary, we also force the application of non-operator
types. In most cases this produces terms that more closely match
HaskHOL constants, as the majority were defined with globally
free, rather than bound, type variables.
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Var to HOLSum

id −→ id′

V ar id −→ id′

App to HOLSum

ty −→ Ty ty′

id −→ Tm (V ar x (UType ty1@(TyV ar bv) ty2))

if(ty′ = TyOp op) : xty = [TyOpV ar bv 7→ op] ty2
else : xty = [ty1 7→ ty′]ty2

App (V ar id) (Type ty) −→ Tm (V ar x xty)

f −→ Tm f ′ ty −→ Ty ty′

App f (Type ty) −→ Tm (TyComb f ′ ty′)

id2 −→ Tm id′2
id1 −→ Tm id′1@(V ar name (ty1 → ty2))

if(isDict id′2) : x = Tm (V ar name ty2)
else : x = Tm (Comb id′1 id′2)

App (V ar id1) (V ar id2) −→ x

f −→ Tmf ′ a −→ Tma′

App f a −→ Tm (Comb f ′ a′)

Lam to HOLSum

id −→ id′ tm −→ Tm tm′

if(id′ = Ty ty) : x = Tm (TyAbs ty tm′)
else let(Tm id′′) = id′ in

if (isDict id′′) : x = Tm tm′

else : x = Tm (Abs id′′ tm′)

Lam id tm −→ x

Type to HOLSum

ty −→ ty′

Type ty −→ ty′

Figure 12. Translating CoreExprs

5. Putting It All Together
In this section we will piece together the concepts from the previ-
ous sections to demonstrate a complete, assisted verification of the
monad class for the Identity data type. Recall that, due to current
limitations of the systems we are working with, all relevant defi-
nitions must be contained within a single module. The first step to
our verification, therefore, is to construct this module. A complete
module containing the definition of the Identity type, the Monad

class, and their intersection is shown in Figure 13.
Next we need to make sure that we have a HaskHOL theory that

contains the requisite definitions for both constructing our proof
obligation and proving it. We have already discussed HaskHOL’s
formalization of monads in Section 2, which is included in the
appropriately named Haskell theory.

module Monad where

import Prelude hiding (Monad , return , (>>=))

data Identity a = Identity a

runIdentity :: Identity a -> a
runIdentity (Identity a) = a

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

instance Monad Identity where
return a = Identity a
m >>= k = k (runIdentity m)

Figure 13. The Monad Module

The following definitional theorems, some of which were previ-
ously used but not discussed, are also available as part of this the-
ory:

inductionIdentity --
|- !P.(!a.P (ID a)) ==> (!x.P x)

recursionIdentity --
|- !f.?fn.!a.fn (ID a) = f a

defIdentity --
|- Identity = (\\’a.(\ x . ID x))

defRunIdentity --
|- runIdentity (ID x) = x

Together, the inductionIdentity and recursionIdentity theo-
rems define the HOL equivalent of the Haskell data definition:
data Identity a = ID a. The defIdentity theorem defines a
term constant, Identity, that acts as a wrapper for the ID construc-
tor. This extra level of indirection is required because the method
for defining abstract types in HaskHOL is based on HOL Light’s
first-order polymorphism. Therefore, constructors are given less
general types than their Haskell equivalents. Our long term plan is
to provide a type definition method that will fully generalize con-
structors, but for now we must either use this trick or perform a
type generalization transformation after the initial translation has
completed.

Following the procedure laid out in Section 2, the remainder of
our verification is carried out by:

• Translating GHC’s intermediate representation of the target
type class instance.

• Deconstructing the translated term into definitions correspond-
ing to the class’s methods.

• Further translating any locally available bindings that align with
these definitions.

• Recombining the final version of the definitions, replacing the
dictionary constructor with MONAD as the head term of the appli-
cation.

• Proving the resultant term correct.

The hermit executable provided by the HERMIT library is an
invaluable tool that can help us at each step of this process. This
program compiles a module, launches HERMIT’s interactive shell,
and populates a context with information pulled from the module’s
ModGuts. An example execution of hermit on the Monad.hs module
is shown in Figure 14.
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Figure 14. hermit’s View of the Monad.hs Module

In this case, we have identified $fMonadIdentity as the name
of the binding that corresponds to the type class instance we are
targetting. We can expand the binding and examine its definition
with the binding-of command. Its definition is formed by the
application of four terms: the dictionary constructor, the instance
type4, and the two definitions for Monad’s methods.

As their names and their locations within this dictionary would
imply, the $c>>= and Identity terms are the definitions for (>>=)
and return accordingly. Querying for information about the bind-
ing group with the info command reveals that Identity is a glob-
ally free identifier. This, paired with the fact that its name has a
leading capital letter, is a good indication that it is a constructor for
a data type. Unfortunately, due to the previously mentioned limita-
tions of HERMIT relating to type constructors, no other informa-
tion about this identifier can be retrieved, and no other translation
work can be done.

The $c>>= term, however, refers to another local binding in
scope, so there is additional work to be done. If we expand its
binding, we can see the expression it contains. We must translate
this definition in order to produce the correct proof obligation:

Note that the translation of the above expansion will match
with the bind definition we supplied as part of the proof obligation
back in Figure 4; a good indication that our verification is on the
right path. In fact, translation produces an identical obligation, at
least visually. Careful readers probably noted that the translation
semantics presented in Section 4 never return constant terms. It is
up to the users of the translated terms to substitute in constants for
variables where appropriate.

This substitution is relatively easy to program thanks to the
combinators and methods provided by HERMIT and HaskHOL.
One possible implementation for term substitution is shown in Fig-
ure 15. Given that all of the constant names in this example mirror
their HaskHOL mappings, we can simply look them up in our the-
ory’s list of defined constants. However, to account for cases when
the names might not line up, the repVar function accepts an auxil-
iary mapping from variable names to constant terms. We search the
union of this mapping and the constants mapping for the term that
corresponds with a given name.

4 HERMIT’s default pretty-printer replaces type applications with green
triangles for brevity’s sake.

repVar :: Map Text HOLTerm -> Text -> HOLType
-> HOL Proof thry HOLTerm

repVar tmMap i ty =
do cs <- constants

case mapLookup i $ cs ‘mapUnion ‘ tmMap of
Just (Const i’ _) ->

mkMConst i’ ty <?>
"type mismatch for term constant."

_ -> return $! mkVar i ty

Figure 15. Substituting Constants for Variables

trans :: TransformH CoreTC HOLTerm
trans = ...

pass :: TheoryPath thry -> HOLTerm
-> HPM HOLTerm

pass ctxt tm = liftIO $
do tm ’ <- applyT replaceType ctxt tm

applyT replaceTerm ctxt tm ’

trans ’ :: Bool -> TheoryPath thry -> HOLTerm
-> HPM HOLTerm

trans ’ True ctxt (Var name _) =
pass ctxt =<<

(at (lookupBinding $ unpack name) $
query trans)

trans ’ _ ctxt tm = pass ctxt tm

Figure 16. Translation and Replacement

If a matching constant skeleton is found, we can use the
mkMConst method to construct an instantiation of the constant that
matches the provided type. If no match is found we return a vari-
able of the provided name and type. Note that repVar fits nicely as
a reconstruction function in a KURE transformation of HOLTerms.

replaceTerm :: Map Text HOLTerm
-> Transform (TheoryPath thry)

(HOL Proof thry) HOLTerm HOLTerm
replaceTerm tmMap =

hvarT (contextfreeT return)
(contextfreeT return) (repVar tmMap)

<+ ...

Structuring this transformation to use a HaskHOL theory context
and the HOL monad allows us to safely make calls to HOL com-
putations, such as mkMConst, during transformation. The definition
of other transformations, such as the replacement of type operator
variables with type constants, follows similarly.

The entire translation process can be succinctly captured by the
three definitions shown in Figure 16 The first definition, trans, is
the transformation from CoreTC to HOLTerm defined by our transla-
tion semantics. The second definition, pass, sequences the replace-
ment of type constants and term constants. The third definition,
trans’, combines the two previous definitions, making the trans

pass optional based on a boolean argument. This allows us to use
the trans’ function for both $c>>= and Identity, providing some
uniformity to the definition of our plugin.

The entire definition of our plugin is included in Appendix A
as a reference. We will also concisely explain the major steps here
though, as they correspond to the itemized bullet-points above.
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First we translate GHC’s intermediate representation:
tm <- at (lookupBind "$fMonadIdentity") $

query trans

Then we deconstruct the translated term:
let (_, [bnd , ret]) = stripComb tm

We further translate these arguments:
bnd ’ <- trans ’ True bnd
ret ’ <- trans ’ False ret

Recombine everything:
monad <- mkConstFull "MONAD" ([] ,[] ,[])
let tm’ = mkIComb (mkIComb monad bnd ’) ret ’

And finally we prove our constructed proof term:
prove tm ’
(proveConsClass defMONAD inductionIdentity
[defIdentity , defRunIdentity ])

As the plugin is completing this work, the user’s terminal is keeping
them informed:
> ghc Monad.hs -O2 -fforce -recomp

-fplugin=HaskHOL.Haskell.Plugin
...
> Parsing constant mappings ...
> Translating from Core to HOL ...
> Translating Bind ...
> Translating Return ...
> Building Monad Instance ...
> Proving ...
> |- MONAD

(\\’a ’b.(\ m k . k (runIdentity m)))
Identity

Should you desire to experiment with this verification workflow
yourself, all of the requisite HaskHOL packages are available from
the first author’s Github, https://github.com/ecaustin/. The
haskhol-haskell package on this site contains the plugin itself, as
well as a README containing installation and execution instruc-
tions. Please note that the development of this verification work-
flow is active research, such that the implementation of the plugin
at the time you download it may differ from the presentation of
this paper; hopefully because of improvements. More information
regarding the HaskHOL system is also available at haskhol.org.

6. Related Work
The closest related work is a recent extension of HERMIT itself.
HERMIT has always supported equational reasoning, insomuch
that it could be used to mechanize the rewriting of Haskell terms.
This reasoning was extremely restricted, though, as it could only
be initiated from existing, not arbitrary, terms. Additionally, this
reasoning was necessarily destructive because HERMIT had no
notion of theorems or saved proofs. A rewrite could be saved as
a script, however, the only way to “prove” it correct was to apply it
and actually transform a term into its goal state.

When the GHC rewrite rule system was changed to permit inac-
tive rules, it provided HERMIT with a source of core expressions
that could be modified without affecting anything else in the compi-
lation environment. HERMIT’s rewrite engine was extended to al-
low direct reasoning over these rules, and a notion of lemmas was
formalized to act as proof objects that could be saved and reused
as attestations of equivalence [19]. Essentially, HERMIT lemmas
were designed and implemented to provide a mechanism for safe
and verified term rewriting.

One of the biggest differences between HaskHOL’s logic and
HERMIT’s logic is that HERMIT’s implementation of equational
reasoning eschews the typical concerns of soundness in favor of
practicality.

Additionally, the expressivity of HERMIT’s lemmas is significantly
limited compared to the term languages of HaskHOL and other
more general proof systems. For example, HERMIT lemmas can
only express equivalences, not implications or any other state-
ments based on non-equational, propositional connectives. That be-
ing said, the early work cited above would seem to indicate that
HERMIT’s extended equational reasoning system works well for
its intended purpose.

The Haskabelle tool mentioned in the introduction is probably
the next closest piece of related work. Like HaskHOL and HER-
MIT, the goal of Haskabelle is to facilitate equational reasoning of
Haskell programs. The principal difference, though, is that Hask-
abelle operates at the source level, rather than at the intermediate
level. The primary advantage of working at the source level is that
the resultant specification and proof terms more closely resemble
the original implementation. This advantage comes at a steep cost,
though, as the Haskell programming language, or more specifically
the GHC implementation of it, is constantly changing and adding
new syntax that must be accounted for. Comparatively, the core
language of GHC changes at a much slower rate.

The secondary consequence of working with Haskabelle is that
it requires your verifications to be performed with the Isabelle sys-
tem. This is not intended as an insult or backhanded comment about
that system, it is simply a statement of fact. Isabelle is an incred-
ibly impressive proof system, however, its reasoning capability is
significantly overkill for most verifications that we care about. It is
our opinion simple verifications should be completed with simple
tools, and that the larger, more complex systems should be reserved
for the larger, more complex problems.

Outside of the Haskell universe, there have been a number of
other attempts to integrate formal reasoning tools with program-
ming languages. One such example that we are familiar with is
Köksal, et. al’s work on integrating the Z3 SMT solver with the
Scala programming language [13]. This integration differed from
our work, in that their goal was to use Z3 to provide Scala with
additional reasoning power, rather than use it to verify Scala pro-
grams. Additionally, they elected to integrate Z3 as a library us-
ing Scala’s equivalent of Haskell’s foreign function interface, rather
than at the compiler level.

Both of these factors make their work much closer to any of the
SAT and SMT binding libraries available on Hackage than ours.
However, given that a number of these libraries are incomplete,
abandoned, or both, it would seem to indicate that there are signif-
icant challenges to integrating reasoning tools with this approach.
At the same time though, we will be the first to admit that there
were significant challenges in reimplementing a formal logic in our
language of choice rather than integrating with an existing tool. In
either case, we point to the work of Köksal as an example of how
beneficial a symbiotic relationship between formal reasoning tool
and programming language can be.

7. Conclusions and Future Work
This work was primarily motivated by the desire to find a lightweight
and approachable solution for verifying type class properties,
specifically the monad laws. When we began our implementation
and integration with the HERMIT system we knew the proposed
verification workflow would be novel, however, we were not en-
tirely sure it would be useable. Thankfully, we feel that the ex-
ample presented in this paper has demonstrated the validity of our
approach, at least for simple class instances. Before we experi-
ment and see if our process scales to more complicated examples,
though, there are a number of issues we feel we need to address
with our future work.
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First and foremost, as can be easily seen in the source code
included in Appendix A, a significant portion of the presented
plugin is hardcoded for this single example. Though the translation
transformation, constant substitution transformations, and proof
tactic are constructed for general use, this plugin will fail to compile
and verify any module other than Monad.hs, as shown in Figure 13.
This is a particularly troubling issue, as the current implementation
of GHC plugins require them to be compiled and installed as part
of a GHC package before they can be used. Making even a minor
or insignificant change to a plugin requires the developer to follow
these steps, adding a non-trivial amount of time to the development
and testing process.

Some of the rigidity of the plugin can be removed by retrieving
command line options rather than hardcoding values. However, it is
not immediately apparent to us how to pass complex, polymorphic
values, e.g. proof tactics, as command line options. One possible
solution that we would like to pursue would be launching a robust,
interactive proof environment to replace the current, final step of
the plugin. This would allow users to both easily reuse existing
proof tactics and develop new ones on the fly.

Beyond that, Section 4 contained a detailed list of limitations
of our current implementation. This list was split roughly down the
middle, with logical limitations of the HaskHOL system account-
ing for half of the issues and the immaturity of the implementation
accounting for the other half. The past several years spent develop-
ing HaskHOL have taught us a valuable lesson that modifying the
foundational logic of a proof system is no small undertaking. As
such, we will likely endeavor to fix issues due to immaturity first.
With these known limitations in mind, we still find the current state
of the work exciting and encouraging.
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A. The Monad Verification Plugin

plugin :: Plugin
plugin = hermitPlugin $ \ _ -> firstPass $

do liftIO $ putStrLn "Parsing constant mappings ..."
let ctxt = ctxtHaskell

liftHOL = liftHOL ’ ctxt
tyMap <- prepConsts "types.h2h" $ liftHOL types
tmMap <- prepConsts "terms.h2h" $ liftHOL constants

--
liftIO $ putStrLn "Translating from Core to HOL..."
tm <- at (lookupBind "$fMonadIdentity") $ query trans
let (_, [bnd , ret]) = stripComb tm

--
let pass :: HOLTerm -> HPM HOLTerm

pass tm = liftIO $
do tm ’ <- applyT (replaceType tyMap) ctxt tm

applyT (replaceTerm tmMap) ctxt tm ’

trans ’ :: Bool -> HOLTerm -> HPM HOLTerm
trans ’ True (Var name _) =

pass =<< (at (lookupBind $ unpack name) $
query trans)

trans ’ _ tm = pass tm
--

liftIO $ putStrLn "Translating Bind ..."
bnd ’ <- trans ’ True bnd

--
liftIO $ putStrLn "Translating Return ..."
ret ’ <- trans ’ False ret

--
liftIO $ putStrLn "Building Monad Instance ..."
monad <- liftHOL $ mkConstFull "MONAD" ([] ,[] ,[])
let tm’ = fromJust $

liftM1 mkIComb (mkIComb monad bnd ’) ret ’
--

liftIO $ putStrLn "Proving ..."
liftHOL $ printHOL =<<

prove tm ’
(proveConsClass defMONAD inductionIdentity
[defIdentity , defRunIdentity ])
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