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Abstract. The predominant, root design among current proof assis-
tants, the “LCF-style,” is traditionally realized through impure, func-
tional languages. Languages that eschew side-effects in the name of pu-
rity, however, present a largely untapped platform for novel experimen-
tation in the implementation of theorem provers. The work in this paper
breaks with tradition by detailing a pure, monadic approach to the LCF-
style that can be utilized by such languages, e.g. Haskell. A new, HOL
system that utilizes this technique, HaskHOL, is introduced and some of
the remaining, open problems are discussed.

1 Introduction

There is an ideological split in the functional programming community regard-
ing the role and importance of purity in a language’s design. Implementors of
interactive theorem provers, however, have almost unanimously elected to rely
on impure languages to build their systems. Browse through the documentation
and source repositories of the most popular proof tools and you will find some
variation of the usual suspects, Lisp and ML. There is another shared trend to
be noticed; an implementation style that dates back to early LCF systems [8].

This ubiquitous pairing of impure languages with the LCF-style has spawned
an impressive number of successful theorem prover systems; among them: Is-
abelle [16], Coq [14], Nuprl [2], and every member of the HOL family [9]. Yet, as
pure languages, namely GHC Haskell [1], emerge as hotbeds for language theory
research, we can not help but feel that analogous opportunities to involve purity
in theorem prover research are lying untapped.

Not only are pure languages going largely unused in research related to LCF-
style provers, but the pervasive use of impure side-effects in the implementation
of these provers has made it almost an unintentional, secondary characteristic
of the style. When we first attempted to build our own proof assistant, we broke
with this tradition, as we needed a monadic system that could easily integrate
with a larger project we were developing. Not only did we fail to find anyone else
attempting similar work, but we struggled to translate many of the popular fea-
tures of these proof systems to a pure implementation. In an effort to document
our work, in addition to hopefully stimulating discussion about the applicability
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of pure languages in the theorem prover realm, we present our monadic approach
to the LCF-style.

The work in this paper is structured as follows. Section 2 provides a brief
characterization of the LCF-style. Comparisons are drawn to parallel implemen-
tation techniques in the functional programming realm, and a basic monadic
approach to the LCF-style is presented in Section 3. Section 4 refines this ap-
proach by tackling the most difficult proof system side-effect to simulate: global,
extensible state. The contents of Section 5 further refine the approach by pre-
senting a strategy for optimization of monadic computations related to stateful
proofs. A hybrid attempt at a proof system meta-languages that utilizes meta-
programming is explored in Section 6. Finally, the paper closes in Section 7 with
a brief introduction to our system, HaskHOL, paired with discussion of some
open problems with the system’s implementation.

2 Characterizing an LCF-Style Prover

The central tenet of the LCF approach is an abstraction of theorems to a type
whose construction is precisely constrained. When this constraint is obeyed, it
forces a bootstrapping approach to deriving new methods of construction not
found in the core logic. Stated more concretely, when following this implementa-
tion technique, the advanced proof capabilities of a system must be reducible to
a composition of that system’s primitive inference rules. Thus, the soundness of
an entire system can be assumed, provided that its logical kernel is itself shown
to be sound; this is the essence of the LCF-style.

Critically paired with the LCF-style is a meta-language that can faithfully
implement the necessary restrictions on the construction of theorems. At mini-
mum, this language must be strongly typed and have a mechanism for controlling
the visibility of data type constructors. Typically, this mechanism is provided
in the form of the language’s module system, its design of abstract data types,
or a combination of the two. Implementation of a proof system, therefore, can
proceed directly by mapping its core logic to functions in the meta-language that
construct and destruct theorems appropriately.

In functional programming nomenclature, the LCF-style can be generalized
as an implementation of an embedded domain specific language (EDSL). As was
mentioned in the introduction, the LCF-style is traditionally facilitated through
impure features, however, the process for implementing EDSLs in pure languages
is both equally common and well understood [11]. The only additional required
step is that effects that were implicitly introduced by a proof system’s meta-
language must now be explicitly structured with a computational monad written
in an EDSL’s host language. Identifying these effects and figuring out how to
accurately simulate them via a monad is the crux of the presented work.

It’s worth noting that the LCF-style does not itself mandate the use of impure
side-effects. For example, Freek Wiedijk has presented a stateless version of a
HOL system whose kernel can trivially be made pure [21]. However, Stateless
HOL still elects to implement a stateful layer on top of its kernel in the name of
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practicality and performance. It is this computational layer that we are targeting
for translation to a monadic implementation.

3 A Monadic Approach to the LCF-Style

When simulating the side-effects of an LCF-style theorem prover via a monad,
it’s important to recognize that a portion of the trusted code base is being shifted
from the meta-language to the prover itself. Depending on where the definition
of the monad is introduced to the proof system, a variety of potential issues
could arise. If the implementation of the monad exists at the logical kernel level,
then the guarantee of soundness provided by the LCF approach is potentially at
risk, as the monad is now lies in the critical path to theorem construction. Even
if the monad implementation resides at a higher level, as it might in a monadic
variant of a system similar to the previously mentioned Stateless HOL, there is
still a possibility of unintentionally making the system inconsistent.

Protecting the soundness of a monadic kernel can be achieved by extending
the LCF-style’s core tenet to additionally constrain the construction of arbitrary
monadic computations. Obscuring the internal constructors of the monad and
its argument type(s), just as would be done for the abstract theorem type, suf-
ficiently implements this requirement. This process is trivially straight-forward,
so the remaining discussion is focused on a harder problem: preserving the con-
sistency of a monadic system.

One potential path to a monad implementation is through the use of monad
transformers. These transformers implement one class of effects each, such that
they can be combined in a stack-like manner to form a single monad display-
ing a closed set of effects [13]. Take for example a basic State and IO monad
transformer stack that could be used to model the effects in a HOL system:

-- Type of the theory context

type Context = ...

-- Type of the monad

type HOL = StateT Context IO

This process promotes the reuse of standard library definitions, which can be
beneficial, however, it’s important to understand the resultant consequences.

In order to facilitate arbitrary transformer stacks, a monad’s effects are de-
fined via non-proper morphisms contained within type classes associated with
its transformer. In the above example, the StateT transformer is associated with
the MonadState class which provides, most notably, the get and put morphisms.
Note that these morphisms serve as duals and, when using the standard trans-
former libraries, it is impossible to expose one for use without also exposing the
other.
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This presents an issue in the stated example, as put can be used to inject
an inconsistent theory context into a computation. This can happen in a variety
of ways, though the simplest is a restoration of an old context after a proof is
performed:

bad1 :: HOL HOLThm

bad1 =

do ctxt <- get -- store old theory context

newAxiom ax -- introduce an axiom

th <- someProof -- requires ax to succeed

put ctxt -- restore the old context , sans axiom

return th

This problem is not unique to the morphisms provided by the MonadState class.
The above definition of HOL also utilizes the IO monad which itself has an associ-
ated class, MonadIO. This class provides the liftIO method that can used to lift
an arbitrary I/O computation into any transformer stack that is rooted with the
IO monad. Again, this can be used to introduce inconsistency to the system by
discarding theory context updates:

bad2 :: HOL HOLThm

bad2 =

do ctxt <- get

liftIO $ evalState bad2 ’ ctxt

-- ’evalState ’ discards the modified context

where bad2 ’ = newAxiom ax >> someProof

As a general rule of thumb, it can be assumed that any transformer that provides
a method for lifting computations or destructively updating any of its argument
types exposes a pathway to inconsistency.

Regrettably, providing an indirect monad definition via a newtype wrapper
is not sufficient to protect against these issues. The combination of the GHC
extensions StandaloneDeriving and GeneralizedNewtypeDeriving allows a user to
circumvent this wrapper to generate a type class instance, even where one was
not previously provided1:

newtype HOL a = HOL ’( StateT Context IO a)

deriving Monad

deriving instance (MonadState Context) HOL

An indirect definition that instead uses a data wrapper provides the desired pro-
tection, but not without negatively affecting the performance of all computations
that use the monad.

The preferable approach is to provide a manually constructed, flattened ver-
sion of the desired transformer stack. This monad’s non-proper morphisms can
then be defined individually, such that their visibility can be controlled just like
any other top-level definition:

1 http://www.haskell.org/ghc/docs/latest/html/users_guide/deriving.html
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module HOL (get) where

newtype HOL a =

HOL { runHOL :: Context -> IO (a, Context) }

get :: HOL Context

get = HOL $ \ s -> return (s, s)

-- Not exposed external to the HOL module

put :: Context -> HOL ()

put s = HOL $ \ _ -> return ((), s)

4 Type-Directed Extensible State

Note that the type of theory contexts was left undefined in the examples from
the previous section. This was intentional, as it is not immediately obvious how
to model these contexts in the presented, monadic approach. Even among LCF-
style theorem provers in the same family, there are differences in implementation.
Using members of the HOL family as an example:

– HOL Light [10] – Follows a pragmatic approach, modeling the theory context
as an implicit collection of top-level, mutable references.

– HOL4 [19] – Models the theory context as a symbol table maintained as a
binary map data structure defined in its pre-kernel system.

– Isabelle/HOL – Models the theory context using the very robust definition
of generic proof contexts provided by Isabelle’s meta-language, Pure [17].

Shared among these approaches, though, is the notion that the theory context
is both heterogenous and extensible outside of the logical kernel. Unfortunately,
while GHC provides a standard analog for most of the commonly occurring side-
effects leveraged by LCF-style proof systems, it lacks an agreed upon technique
for modeling extensible state. Presented in this section is an approach similar
to the one utilized by HOL4. The idea of a central symbol table that carries
configuration data is seen in other large Haskell systems, such as XMonad [20].
However, as will be discussed in Section 7.1 we are not entirely convinced that
this is the optimal technique.

At the heart of the presented approach is a standard Haskell technique for
heterogeneity, an existentially typed abstract data type:

class Typeable a => ExtClass a where

initValue :: a

data ExtState = forall a. ExtClass a => ExtState a

The ExtState constructor can be used to box values of different types, provided
they have an instance of the ExtClass class, making their collection well typed.
The inclusion of the ExtClass class constraint serves two purposes. First, it acts
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as a subclass to other type class constraints we need to introduce. Second, it
provides a mechanism to define initial values for individual pieces of the theory
context. Defining initial values for context extensions allows static configuration
information to be passed in a dictionary manner, rather than requiring it be
marshaled around by a stateful monad, which can help with performance.

The theory context is modeled as a map whose indices are serializations of
the types of the context’s extensions. These serializations are produced via the
Typeable class, as introduced through the ExtClass class. Destructive updating
of the context, therefore, takes the following form, where val is the value to
insert or update and ctxt is the context map:

insertMap (show . typeOf $ val) (ExtState val) ctxt

Similarly, context retrieval can be written using the option monad, Maybe, to
guard the type-safe casting from the existential type to the target type, a:

fromMaybe initValue $

do (ExtState val) <- lookup (show $

typeOf (undefined :: a)) ctxt

cast val

Note that this approach mandates that each piece of the theory context has a
unique type to prevent future extensions from overlapping the index of an old
extension. This uniqueness can easily be enforced by utilizing newtype wrappers
for context types that are not exported outside of the module they are defined.

An example of all of these pieces in play is shown below. Briefly explained,
a new unique type is defined for binder operator tokens and the necessary class
instance is provided. This allows the system implementor to write methods for
adding and retrieving binder operators to be used during term parsing:

newtype BinderOps = BinderOps [String]

deriving Typeable

instance ExtClass BinderOps where

initValue = BinderOps ["\\"]

parseAsBinder :: String -> HOL ()

parseAsBinder op =

modifyExt (\ (BinderOps ops) ->

BinderOps $ op ‘insert ‘ ops)

binders :: HOL [String]

binders =

do (BinderOps ops) <- getExt

return ops

In the above example, modifyExt and getExt are primitive monadic computa-
tions that follow from the general forms of context map manipulation previously
discussed.
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5 Optimizing Monadic Proof

As was demonstrated in the previous sections, it is certainly possible to provide a
monad definition that sufficiently simulates the side-effects required in an LCF-
style proof system. This implementation is not necessarily performant, though.
Perhaps the most commonly cited criticism of using monads is their impact on
computational efficiency within a single thread of execution when compared to
equivalent, impure programs. The potential problem is demonstrated below with
a small, example program:

main :: IO ()

main = print . (flip evalState) 35 $

do x <- f

y <- f

return (x, y)

where f :: State Int Int

f = gets fib

The important thing to note in the above code is that there is an expensive sub-
computation, f, that is repeated. This computation depends on the monadic
state value, which can visually be identified as being constant between evalua-
tions.

Unfortunately, the compiler cannot make the same observation, thus f is
evaluated twice. The program can be manually optimized, though, by sinking
the point of evaluation within the where clause:

main :: IO ()

main = print $

let x = f

y = f in

(x, y)

where f :: Int

f = evalState (gets fib) 35

Because f now fully evaluates to a pure value, the compiler is able to perform the
appropriate inlining and subexpression elimination, effectively cutting runtime
time in half.

The above example can be shifted to the domain of theorem proving by imag-
ining f as a lemma used within a larger proof. Recall from Section 3 that forcing
the evaluation of a proof computation and then using the resultant theorem can
raise inconsistency issues. The general problem is that context modifications
critical to a proof could potentially be discarded. This can be protected against
by enforcing two properties:

1. Only non-context-modifying computations can be forcefully evaluated.

2. A theorem can only be used within a context consistent with the one in
which it was originally proved.
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Both of these properties can be witnessed statically at the type-level by
tagging monadic proof computations with phantom type variables [7]:

newtype HOL cls thry a =

HOL {runHOL :: Context thry -> IO (a, Context thry)}

evalState :: HOL cls thry a -> Context thry -> IO a

evalState m = liftM fst $ runHOL m

The first type variable in the definition of HOL, cls, records a tag for the
classification of a computation. This variable is inhabited by one of two possible
empty data declarations: Theory, for theory context-modifying computations; or
Proof, for effect free, proof computations. The classification type of a computa-
tion is inferred from its component, primitive computations. For example, the
previously shown modifyExt method would be classified as a Theory computa-
tion given that it is used to update a context extension value. The classification
of effect-free computations are left fully polymorphic to prevent type inference
from disallowing them to be mixed with Theory computations. The Proof tag,
therefore, is only explicitly used when a witness to the first property is needed.

The second type variable, thry, records a tag for the working theory required
by a computation. These tags are unique, empty data declarations that should
be generated for each theory context checkpoint that is associated with a library.
For example, the proof computation for the truth theorem, |- T, would carry a
tag of BoolThry indicating that it requires the definition of T from the Boolean
logic library. Note that the thry type variable also haunts the Context type
definition to guarantee that theory context values stay tightly coupled to their
respective tags.

With these tags in place, it’s trivial to define an alias to the evaluation
function that provides a guarantee of the first property. For the sake of simplified
discussion, assume that there exists a method, runIO, that can be used internal
to this evaluation function to safely escape the IO monad 2:

safeEval :: HOL Proof thry a -> Context thry -> a

safeEval m = runIO . evalHOL m

Note, though, that this definition provides no guarantee of the second property.
Once safeEval returns a pure value, it can be lifted into any computation via
the return function, regardless if it is consistent with the theory context or not.

Rather than return an unprotected pure value, the resultant value should
also be tagged with the theory context used to compute it. This process can
made general for all possible values by using an open type family that defines
morphisms for both protecting and using protected data safely. One possible
implementation is shown below that, when paired with safeEval, provides guar-
antees for both of the desired properties:

2 This assumption holds as long as primitive computations with non-benign IO effects
are correctly tagged as Theory computations
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class Protected a where

data PData a thry

protect :: HOLContext thry -> a -> PData a thry

serve :: PData a thry -> HOL cls thry a

instance Protected HOLThm where

data PData HOLThm thry = PThm HOLThm

protect _ = PThm

serve (PThm thm) = return thm

safeProof :: HOL Proof thry HOLThm -> Context thry

-> PData HOLThm thry

safeProof mthm ctxt = protect ctxt $ safeEval mthm ctxt

The safeProof method can be used to safely optimize monadic proof in
a number of convenient ways, ranging from run-time memoization to staged,
compile-time computation. When paired with the system of theory context tags
as described above, though, it too strongly enforces the second property. This
combination forces type inference to find a monomorphic value for thry, such
that a tagged value can only be used in the context in which it was computed.

In the absence of primitive “undefinition” methods, LCF-style theory con-
texts can be assumed to be monomorphic. Thus, a theory context is always
consistent, not only with itself, but also with any new context formed through
extension. A proper type-level witness to the second property, therefore, would
be polymorphic, such that tagged values are allowed to be used in any context
subsequent to the one in which it was computed.

As was the case with the basic definition of theory contexts, even within
the same family of LCF-style provers there are differences in how the hierarchy
of contexts is represented. Again, HOL Light takes a very pragmatic approach
and leverages its host language, OCaml’s, script-like execution scheme to build a
strict, linear ordering of theory contexts. HOL4 and Isabelle/HOL, on the other
hand, both have much more complex representations that more closely resemble
a semi-lattice structure.

In either case, the method for generating a polymorphic value for the thry

variable is a translation of the context hierarchy structure to a type class repre-
sentation. In the interest of simplifying the following discussion, a linear ordering
of theories is assumed. Thus, rather than storing only the most recently seen the-
ory checkpoint, theory context tags should store all checkpoints witnessed up to
that point. For example, the type of the context associated with the Boolean
logic library is shown below:

ctxtBool :: Context (ExtThry BoolThry BaseThry)

Theory membership can trivially be checked, therefore, by constructing a set
of type class instances that iterate over this linear type, much as one would a list.
Again using the Boolean logic library as the example, the following instances
check a theory tag for the existence of the BoolThry type, indicating that the
library is required to evaluate a computation.
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class BaseContext a => BoolContext a

instance BaseCtxt b => BoolContext (ExtThry BoolThry b)

instance BoolContext b => BoolContext (ExtThry a b)

In the above code, the first two lines assert a correct linear relationship between
the Boolean context and its parent, the Base, or kernel, context. The last line
performs the iterative search if the BoolThry type is not found at the head of the
type. No instance is defined for the base tag type, BaseThry, which provides a
terminating condition for the type checker.

The BoolContext class can now be used as a constraint to indicate that the
Boolean logic library is required for a computation. When paired with the same
definition of safeProof that was shown above, the desired, polymorphic behavior
is observed:

thmTRUTH :: BoolContext thry => HOL Proof thry HOLThm

pTRUTH :: BoolContext thry => PData thry HOLThm

pTRUTH = safeProof thmTRUTH ctxtBool

The optimized version of the truth theorem, pTRUTH, can now be safely reused in
any context that includes the information from the Boolean logic library.

6 Meta-Programming as a Meta-Language

The previous two sections have detailed how to enhance a basic monadic ap-
proach, but both sets of improvements come at the cost of fairly complicated
type system wizardry. From the point of view of a system implementor familiar
with pure, functional languages, this is burdensome, but not unexpected. How-
ever, from the point of view of a theorem prover user, it is clear that the amount
of host language code required to be written to develop new theories goes well
beyond what is typically called for by a proof system.

Thankfully, the majority of this required code is boilerplate that can be
automatically derived. Take for example, the introduction of a new extension to
the theory context as described in Section 4. To facilitate the described, type-
directed approach to extensible state, the user needs to provide, minimally, two
pieces of code:

– A unique newtype wrapper for the extension type.

– An instance of the ExtClass class that defines the initial value for the exten-
sion type.
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We have already seen an example of this in the definition of binder operator
tokens:

newtype BinderOps = BinderOps [String]

deriving Typeable

instance ExtClass BinderOps where

initValue = BinderOps ["\\"]

In the above code, note that only two key pieces of information need to be
provided by the user: the name of the newtype wrapper and the initial value; the
remainder of the code can be thought of as a template:

newtype <name > = <name > <type of initial value >

deriving Typeable

instance ExtClass <name > where

initValue = <name > <initial value >

GHC provides a library for compile-time meta-programming, Template Haskell [18],
that allows the user to generate and splice templated code anywhere in the source
of their program. This includes the capability for splicing in top-level declara-
tions, as would be required with the above example. A snippet of the Template
Haskell code used to generate a splice for new extensions is shown below:

newExtension :: String -> ExpQ -> Q [Dec]

newExtension ext val =

do val ’ <- val

case val ’ of

SigE e eTy ->

let name = mkName ext

ty = ... -- newtype declaration

extCls = ... -- instance declaration

in return [ty, extCls]

_ -> fail "newExtension"

Using this general splice, the name of the wrapper is provided as a String

and the initial value is provided as a Template Haskell expression, ExpQ. The
latter type is necessary in order to easily handle initial values whose inferable
type is polymorphic; for example, a case where an initial value is an empty list.
By providing the initial value as a quote containing a type ascription, Template
Haskell can easily deconstruct the expression to extract both the value and its
intended type. The boilerplate code for binder operators shown above, can now
be replaced with the simple, single line splice shown below; a major improvement
for the user:

newExtension "BinderOps" [| ["\\"] :: [String] |]
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This process can be specialized for anywhere a sizable piece of boilerplate or
template code needs to be used. Among the numerous possibilities:

– Defining new context extensions or configuration flags.
– Controlling theory context construction.
– Marshaling compile-time proof optimizations.
– Safely extracting static information from a context, i.e. definitions or axioms.

When used in this way, Template Haskell, or a similar meta-programming lan-
guage, begins to act as the meta-language of the proof system at a level above
what the host language can provide. The result is a proof system of complexity
lying somewhere between lightweight systems, like HOL Light, and more robust
systems, like Isabelle, Coq, and Nuprl.

7 HaskHOL

Following the techniques described in this paper, we have implemented our own
HOL theorem prover system, HaskHOL, based on a stateless higher-order logic
with quantified types [3]. This system is currently available on the public package
repository for Haskell, Hackage3. At the time of this writing, only the core of the
system is publicly available. Users who have GHC Haskell installed along with a
copy of the Cabal package management system can easily install HaskHOL with
the following command:

cabal install haskhol -core

Additional, experimental libraries are available by request, however, we are
awaiting the official release of GHC 7.8 before stabilizing them for public re-
lease.

7.1 Open Problems in HaskHOL

As was hinted at in Section 4, there are a few issues with the implementation of
HaskHOL that we view as open problems.

Most of these issues involve the design pattern at the heart of HaskHOL’s
extensible state mechanism. A perceived advantage of the technique presented
in Section 4 was a simplified path to context checkpointing. By requiring con-
text extensions to have an instance of the Lift class, a theory context value
could be easily spliced to a top-level definition using Template Haskell. This
value can be pre-compiled, both improving run-time performance and opening
up new optimization opportunities. This system works great, until an extension
is introduced that falls into one of the following two classes:

– Values for which an instance of the Lift class cannot be derived.
– Values that require a large number of Exp constructors to implement a Lift

instance.
3 http://hackage.haskell.org
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The first problem class is most commonly encountered when attempting to
store data in the context that is related to a proof system’s rewrite engine.
Functionally typed objects, such as conversions or tactics, cannot be represented
with Template Haskell’s Exp type, as Haskell lacks the ability to inspect function
construction. Instead, these objects must go through a defunctionalization pass
before being stored in the context. This process is not only burdensome for the
user, it also introduces a fair amount of run-time overhead.

The second problem class is representative more of a perceived weakness
of Template Haskell, than the design of HaskHOL’s extensible state mecha-
nism. The dominating factor in compile-time performance when using Template
Haskell is the typing and renaming of splices. When attempting to splice large
values, the maximum memory residency of the GHC compiler skyrockets and
the size of the resultant object files become noticeably larger.

We have found a reasonable workaround to these issues that involves con-
structing pure values by escaping the IO monad with unsafePerformIO instead of
Template Haskell. This solution is obviously non-ideal, however, it seems prefer-
able the extremely long or failed compilations that would occasionally be encoun-
tered when building some of HaskHOL’s more advanced libraries. Furthermore,
the “damage” from using this non-ideal solution is mitigated by restricting its
application to only the very large splices that choke the GHC compiler.

It is our belief, though, that the probable solution to these problems is to
scrap the idea of theory checkpointing via Template Haskell altogether. A num-
ber of people have pointed to the OpenTheory [12] system as a possible alterna-
tive, however, we have yet to be able to invest the time to see if it is compatible
with our monadic approach.

8 Related Work and Conclusions

There is a small overlap between the functional programming and theorem prover
worlds where pure languages do seem to have a place: the development of de-
pendently typed languages that blur the line between proof assistant and pro-
gramming language. Agda [4], a language based on intuitionistic type theory,
is perhaps the most well known system in this domain. Edwin Brady’s depen-
dently typed languages, Idris [6] and the now deprecated Ivor [5], are closely
related, though their focus appears to be on producing efficient code rather than
providing a robust prover environment.

Outside of system implementations, there has been an interesting, recent
pairing of monads and higher-order logic. Myreen et. al presented some early
work towards a verifiable implementation of HOL Light [15]. This work included
a monadic definition of HOL Light’s kernel written in HOL4, though, the de-
scribed monad seemed designed to be easy to verify rather than applicable for
real world use. We are especially excited to see how this work develops, as to
the best of our knowledge it is the work most closely related to our own efforts.

It is our hope that pure languages find increased traction in the realm of
theorem provers. We are certainly not making the claim that current systems
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are flawed in any way, just that there exist unexplored research opportunities
that could potentially benefit proof tools, current and future alike. Our perceived
first, logical step in this exploration, a monadic re-envisioning of the LCF-style,
has been presented along with a prototype system implementation. Ideally this
system, HaskHOL, would serve as both a platform for further research and pos-
sibly, if given enough time to mature, a viable, real-world proof system.
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