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Abstract. There have been numerous extensions to classical higher-
order logic, but not all of them interact non-trivially. Two such exten-
sions, stateless HOL and HOL extended with quantified types, generate
an interesting conflict in the way that type operator variables are im-
plemented and handled. This paper details a proposed solution to that
conflict and explores the key impacts to the logical kernel. A prototype
system, implemented in GHC Haskell, is provided along with a discus-
sion of how type classes can be used to simplify the logic from the user’s
perspective.

1 Introduction

Higher-order logic (HOL) has been in existence for a little over three decades [9].
In that time, the original proof system has spawned an impressive family tree
with each descendent imparting their own spin on the HOL design. This paper
focuses on the confluence of the logics of two such systems: Freek Wiedijk’s
Stateless HOL [25] and Norbert Vöelker’s HOL2P [24]. The intersection of these
logics is problematic in that each introduces the notion of type operators in
different ways to serve different purposes.

Taking a step back, it’s important to address why these extensions are attrac-
tive to users in the first place. There’s a growing desire in the Haskell community
to formally verify software written in the language. Following from the ”eat your
own dog food” attitude, there’s an equally strong inclination for those tools to
implemented in Haskell itself. There have been numerous attempts to meet these
goals that we are aware of, but ultimately they all rely on throwing the veri-
fication over the wall to an external tool at some point in the process [10, 14].
It is our goal to simplify that workflow by providing a general purpose theorem
prover written in Haskell for Haskell.

We have targeted HOL as the base logic for our proof system given its success
in verifying a wide variety of problem domains, both in hardware [8, 16] and
software [15]. We were also attracted by the large number of HOL based theorem
provers with active communities, including Isabelle/HOL [17], HOL4 [21], and
HOL Light [11]. Each system has an impressive body of verification work to
draw from to compliment our efforts.
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When implementing provers in the LCF family tree some variant of the ML
programming language is typically used. This presents a challenge when trying
to implement a related system in Haskell as it does not offer the side-effectful
features that are so pervasively leveraged when working with ML. The authors
are painfully aware of this fact after a less than successful attempt to naively
translate HOL Light directly into Haskell [3]. This is why we personally are
interested in the Stateless HOL system; we view it as a large leap towards a
pure and total logical kernel that aligns more closely with Haskell’s ideology.

We encounter an analogous problem when moving in the opposite direction.
Haskell’s numerous type system extensions, especially those included in the Glas-
gow Haskell Compiler [1], greatly surpass what is traditionally representable in
HOL. We look to the HOL2P system for guidance on how to move to a polymor-
phic lambda calculus in an attempt to capture more of these features directly.

In this paper we make the following contributions. In Section 2 we review the
primitive logics for the systems mentioned above, focusing on changes that are
relative to our desired features. Then, in Section 3 we identify the inconsistency
that occurs with the melding of these systems and propose a modified logic that
solves the problem. Finally, in Section 4 we discuss a prototype system based
on this logic, HaskHOL, that is implemented using GHC Haskell.

2 Background

The foundation of both Stateless HOL and HOL2P is John Harrison’s HOL
Light. The goal of HOL Light is to provide a full powered HOL proof assistant
with a logical kernel that is simpler compared to those of related systems. The
simplified kernel paired with an embedded domain-specific language implemen-
tation approach gives the entire system a very lightweight feel, as the name
would imply.

Central to the logical kernel is the representation of HOL types and terms.
HOL Light’s elected representation, shown below 1, maps almost directly to the
simply-typed lambda calculus.

data HOLType

= TyVar String

| TyApp String [HOLType]

data HOLTerm

= Var String HOLType

| Const String HOLType

| Comb HOLTerm HOLTerm

| Abs HOLTerm HOLTerm

1 The implementation shown here is written in Haskell to make comparison with the
material in Section 4 more direct. It is worth noting, though, that HOL Light,
Stateless HOL, and HOL2P are all actually implemented in OCaml, not Haskell.
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The only significant between the two is that, rather than fixing the set of base
types, HOL Light supports type extension through its TyApp constructor. The
first field of the constructor is a string identifier for a constant with the second
field containing a list of type arguments to apply to the constant.

For example, HOL Light includes two primitive type constants mapping to
boolean and function types respectively:

tyBool :: HOLType

tyBool = TyApp "bool" []

tyFun :: HOLType -> HOLType -> HOLType

tyFun ty1 ty2 = TyApp "fun" [ty1 , ty2]

Any other type constants must be introduced through HOL Light’s theory exten-
sion mechanisms. This restriction is necessary to guarantee that a user can not
provide conflicting definitions of a constant within the same working theory. In
order to facilitate this design decision, HOL Light leverages global memory ref-
erences to both track constants as they are introduced and store any information
associated with the constant.

2.1 Stateless HOL

Stateless HOL modifies the logical kernel of HOL Light in an effort to sever
the dependence on global state for the previously mentioned primitive extension
mechanisms. The author of the system cites this as being primarily useful for
allowing definitional ”undo” functions. These methods would provide the user
with the ability to change or remove constants from the current working theory
without requiring a complete reloading of the system. As mentioned in the intro-
duction, though, we see value in the stateless approach because of its increased
purity.

The principal idea behind the stateless modification is a simple one: embed
properties of the kernel types directly such that you no longer need to query
global state in order to retrieve them. The implementation is roughly the same
regardless of which kernel type you’re working with, so we’ll focus on the em-
bedding of type constant information since it’s the use most relevant to our
work.

data HOLType

= TyVar String

| TyApp TypeOp [HOLType]

data TypeOp

= TyPrim String Int

| TyDefined String Int Theorem
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The above two data types provide the complete definition of HOL types in the
Stateless HOL system. Note that, compared to the original HOL Light system,
the first field in the TyApp constructor has been changed from String to a new
auxiliary data type, TypeOp, representing type operators.

There are two possible cases for type operators: primitive operators, such
as bool and fun, and defined operators, which are those introduced via theory
extension. In either case the TypeOp instance carries both the operator identifier
and its arity, where as previously the user would have to call a stateful function,
getTypeArity, in order to retrieve the second piece of information. Instances of
defined type operators also carry their definitional theorem which can be used
to differentiate between operators of the same name.

2.2 HOL2P

Excluding the redefinition of the kernel types, the logic of Stateless HOL is
largely unchanged compared to that of the original HOL Light system. This is
not the case with HOL2P, as it looks to extend HOL Light’s logic rather than
reimplement it in an alternative manner. The 2P, in this case, refers to the move
from a simply-typed lambda calculus to a second-order, polymorphic lambda
calculus.

Added to the logic are universal types, type abstractions and combinations,
and type operator variables, as made familiar by numerous System F based
programming languages. Thanks to Coquand, however, we know that the com-
bination of HOL and System F is inconsistent [6] To avoid this problem HOL2P
introduces a ”smallness” constraint on bound types: universal types cannot ab-
stract over other universal types or type variables that are otherwise uncon-
strained.

Great care was taken by the system’s author to make the changes introduced
by HOL2P as minimally invasive to the original HOL Light logic as possible.
HOL2P makes only one modification to the implementation of HOL types; the
addition of a constructor for universal types:

data HOLType

= TyVar String

| TyApp String [HOLType]

| UType HOLType HOLType

All other type features of the system are added via auxilliary definition or syn-
tactic distinction in the parser.

The lack of a structural distinction among these elements complicates a num-
ber of primitive operations of the logic. For example, the only difference between
a type operator variable and a regular type variable is the presence or lack of
a _ character prefixing the variable name. Furthermore, in order to support
substitution of type operator variables, these identifiers have to be repeatedly
boxed and unboxed by TyVar constructors in order to satisfy both the type of
the substitution function and the first field in the TyApp constructor. Because all
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of this must be done in a sound and consistent way formerly trivial methods,
such as mkVarType, now contain a number of correctness conditions as part of
their implementation.

3 Stateless HOL with Type Quantifiers

When combining these logics we first identified what was different between the
primitive inference rules of the systems. Excluding the four additional rules that
HOL2P added to bring congruence and beta reduction to the type level, the
systems share the same ten basic rules of the original HOL Light system. Of
these rules, only one had significant differences:

INST TYPE
[(ty1, tv1), ..., (tyn, tvn)] A ` t

A[ty1, ..., tyn/tv1, ..., tvn] ` t[ty1, ..., tyn/tv1, ..., tvn]

Implicit in the INST_TYPE rule is the definition of type instantiation; this is where
the key change between systems occurs.

In the simplest case, type instantiation is a substitution performed over type
variables. For Stateless HOL this substitution is trivially defined by the following
rules:

x [ty/x] = ty
y [ty/x] = y (y 6= x)
(c a1 ... an) [ty/x] = (c a1’ ... an’)

Note that we use a tick notation to indicate recursive application of substitu-
tion. The intent here is to show that in the TyApp case only the first field is
left unchanged. This makes sense from a functional programming perspective
where substitution would be defined as a function of type (HOLType, HOLType)->

HOLType -> HOLType. Because c in this system is of type TypeOp, we know that
we cannot recursively apply the substitution function to it.

This is not the case for HOL2P as the first argument to a type application
may be a type operator variable and, therefore, may be subject to substitution.
To handle this possibility we need to add two additional rules. For the sake
of completeness, we also show the name capture avoiding substitution rules for
universal types:

( x a1 ... an) [c/ x] = (c (a1’) ... (an’)) (arity c = n)
( x a1 ... an) [Π b1 . ... . Π bm . ty/ x] = ty [a1’/b1 ... an’/bm]

(m = n, ty is small)
(Π x. a) [ty/x] = (Π x. a)
(Π y. a) [ty/x] = (Π y. a’)

(y 6= x, y is not free in ty)

The first rule shown above handles the case when we are substituting a known
type constant for a type operator variable. The second rule handles the substi-
tution of a universal type for a type operator variable. In this case we repeatedly
perform a beta reduction until we’re left with a small type.
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As was alluded to in Section 2, these rules are ill-defined. This is due to
the fact that, unlike in Stateless HOL, there is no true representation of a type
constant or operator outside of the context of a type application. In order to
build the substitution argument [c/_x], therefore, we must ”fake it” by supplying
type variables with identifiers that match those of c and _x. It is then up to the
implementation of the substitution function to perform the correct coercions.

The integration of a stateless approach destroys this work around. Because
there is no longer a global state storing information about constants in the
kernel, there is no way to convert from a variable identifier to a type operator.
This means that the type operator must be constructed before the substitution
occurs, changing the argument type from (HOLType, HOLType) to (?, TypeOp).

In the above explanation we indicate that the first type of the substitution
argument is unknown because it is dependent on the implementation of type
operator variables. Since that facet of the type system was not state dependent
we could continue to play the coercion games of HOL2P should we want to.
However, the change to the second type of the argument is not optional and,
more importantly, mandates the separation of the substitution function in to
multiple pieces to maintain well-typedness.

As will be discussed in more detail in Section 4, we elect to make the distinc-
tion of type operator variables purely structural. As such, we end up with three
separate substitution functions. The rules for these functions are shown below
along with their associated argument types for clarity’s sake:

(HOLType, HOLType) Substitution

x [ty/x] = ty
y [ty/x] = y (y 6= x)
(c a1 ... an) [ty/x] = (c a1’ ... an’)
(Π x. a) [ty/x] = (Π x. a)
(Π y. a) [ty/x] = (Π y. a’) (y 6= x, y is not free in ty)

In all cases, ty must preserve the smallness of x.

(TypeOp, TypeOp) Substitution

x [c/ x] = x
( x a1 ... an) [c/ x] = (c (a1’) ... (an’)) (arity c = n)
(Π x. a) [c/ x] = (Π x. a’)

(TypeOp, HOLType) Substitution

x [Π b1 . ... . Π bm . ty/ x] = x
( x a1 ... an) [Π b1 . ... . Π bm . ty/ x] = ty [a1’/b1 ... an’/bm]

(m = n, ty is small)
(Π y. a) [Π b1 . ... . Π bm . ty/ x] = (Π y. a’)

(y is not free in ty)
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It’s worth noting that the resultant impact to the logical kernel goes beyond
having to add more primitive inference rules to accommodate the additional sub-
stitution functions. Because type substitution is such a fundamental operation
it’s used in number of places, both directly and indirectly. Any use that is fully
polymorphic, which is to say it could be any of the above rule sets, requires
three separate versions of the calling function. The result, therefore, is a linear
explosion in code, both for users and implementers, not just in the kernel, but
the entire proof system. We address how we combat this growth in complexity
with our prototype implementation, HaskHOL, in the next section.

4 HaskHOL

As has been mentioned multiple times, HaskHOL is our prototype implementa-
tion of the logic described in the previous section. Going a step beyond Stateless
HOL, we’ve striven to make the logical kernel of HaskHOL both pure and total.
Using monads, as is the tradition when simulating side-effects in Haskell, we
then built a stateful layer on top of that kernel. The resulting interface that is
exposed the user is nearly identical in form and function to those of the HOL
systems that have inspired HaskHOL’s development.

The implementation of the kernel types in HaskHOL follows closely from the
intersection of Stateless HOL and HOL2P’s primitive types. Only two significant
changes have been made, both with the goal of moving away from using syntax
to distinguish between the various kinds of variables.

data HOLType

= TyVarIn Bool String

| TyAppIn TypeOp [HOLType]

| UTypeIn HOLType HOLType

data TypeOp

= TyOpVar String

| TyPrim String Int

| TyDefined String Int Theorem

The first change follows from the discussion in the previous section. We have
elected to implement type operator variables as a new constructor in the TypeOp

data type. This allows us to implement the (TypeOp, TypeOp) and (TypeOp,

HOLType) substitution functions as near direct transcriptions of the rules that de-
fine them. Similarly, the second change is made to the structure of non-operator
type variables. The distinction between small and unconstrained variables is now
carried in an additional boolean argument to the constructor rather than in the
variables’ names.

While both of these changes greatly simplify the implementation of the type
substitution functions, we still have to deal with the code explosion problem
discussed at the end of previous section. The first solution we thought of involved
using heterogeneous data structures to fold the multiple substitution functions
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back into one. Ultimately we decided against going down this path because we
couldn’t find a data structure that felt satisfying to use. The structures all seemed
to be split into two categories, those that were implemented with questionable
language hacks and those that were overly burdensome to use.

Instead, we decided to utilize Haskell’s type class system to provide an ad
hoc polymorphic view of the substitution function. There would still be three
separate functions to implement, but we could rely on Haskell to implicitly pass
in the correct one at compile time. This way, at least from a user’s perspective,
the logic of the system is no more complex than it needs to be.

Our solution consists of a multiparameter type class with two methods, one
to filter the argument list to only valid pairs and one to perform the substitution.
While testing this approach we found that we had a related hiccup with type
instantiation. Depending on the type of the instantiation list, name capture
issues introduced by type abstractions needed to be handled in different ways,
requiring yet another type class. To simplify the types of the methods in our
kernel we elected to implement our substitution class as a superclass of our
instantiation class. The signatures for both are shown below:

class TypeSubst a b where

validSubst :: (a, b) -> Bool

typeSubst :: [(a, b)] -> HOLType -> HOLType

class TypeSubst a b => Inst a b where

instTyAbs :: [(HOLTerm , HOLTerm)] -> [(a, b)] -> HOLTerm

-> Either HOLTerm HOLTerm

This gives us the following types for our type instantiation function and
INST_TYPE rule:

inst :: Inst a b => [(a, b)] -> HOLTerm -> HOLTerm

primINST_TYPE :: Inst a b => [(a, b)] -> Theorem -> Theorem

Using these methods requires no additional work by the user with one small
exception. Haskell will always infer the most general type it can for a value. It
will also try and select the most general type class instance it can for a value.
In the event that an instance does not exist for that general type Haskell will
fail with a type inference error. Within the context of our system, this happens
whenever the user tries to call one of these functions, either directly or indirectly,
with an empty list. This is easily remedied by giving the list any suitable type
annotation, as is done in this example: mkConst "="([]::[(HOLType, HOLType)]).

At the time of this submission, a partial release of the source code for the
HaskHOL system is being made available on the first author’s website at http:
//people.eecs.ku.edu/~eaustin/. This release is partial in that it stops at
the the stateful layer of the proof system, such that the provided code focuses
primarily on the features relevant to the content of this paper. A more complete
release is planned on the public Hackage server in the near future and is also
available from the authors by request.
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5 Related Work

HaskHOL is not alone in trying to bring a general purpose theorem prover to the
Haskell community. Agda [5], a combination of a dependently typed program-
ming language and proof assistant, has been attempting to grow a sizable user
base for the past few years. While not exactly fitting the ”in Haskell for Haskell”
paradigm that HaskHOL is striving to fill, Agda gets close thanks largely to the
fact that its syntax and design was heavily inspired by Haskell itself. Because of
this, it is possible to translate between Haskell code and Agda specification with
relative ease which seems to be its main appeal to the Haskell community.

MProver [19] is another proof system developed in Haskell. Like HaskHOL, it
is a relative newcomer to the field and still appears to be in an early, developmen-
tal stage. The system shows great promise, though, especially with its approach
to tackling verification of lazy code through equational reasoning. Rather than
selecting an established logic as its base, the foundation of MProver appears to
be a new, purpose built logic designed to target the more interesting aspects of
the Haskell language.

On the HOL side of things, HaskHOL is hardly unique in its attempt to
develop a different and improved proof system. One system, HOL Zero [2], has
been drawing a significant amount of praise lately for its approach to higher-order
logic. Rather than focusing on improving a user’s ability to develop proofs, HOL
Zero’s driving goal is to make the system as sound and trustworthy as possible.
The purpose of doing so is two fold. First, it allows HOL Zero to act as a trusted
proof checker for other less reliable or well known systems. Second, it allows
HOL Zero to serve as a good example of what a simple and correct theorem
prover should be.

HOL Omega [13] is another HOL system that we’re keeping a close eye on.
We’re doing so largely in part because it is similarly influenced by HOL2P,
though it chooses to go a different direction by making logical extensions to
HOL4 rather than HOL Light. The unique portion of HOL Omega’s logic that
we’re really interested in is the inclusion of a kind system similar to the one
found in System Fω. As Haskell users we’re no strangers to using kinds in our
day to day work, so we’re excited to see if a proof system can capture that style
of programming in a natural and straightforward way.

6 Conclusions and Future Work

The goal of HaskHOL has always been to be a general purpose theorem prover
used in support of Haskell based projects. With the current iteration of HaskHOL’s
logic described in this paper we feel closer to achieving that goal than we ever
have before. This is obviously largely thanks to the authors of the HOL systems
that have inspired us up to this point. However, like any good research project,
Haskell represents a moving target that seems to have an ever increasing velocity.
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Recently, the work on kind promotion has had a serious impact on Haskell’s
type system and core language [26]. This change opens the door to a wide variety
of useful programming techniques that HaskHOL will remain unable to verify
until it adds a compatible kind system to its logic. HOL Omega was intentionally
mentioned last in the related work section for this reason. It comes very close to
what we desire for the next evolutionary step of HaskHOL. We’re hoping to one
day leverage a similar approach to integrating a kind system with HOL in order
to close the capability gap between HaskHOL and Haskell as much as we can.

While we tackle that problem, we hope to simultaneously work with the
incredible team behind the HERMIT transformation system [7]. Our hope is
that this will be a mutually beneficial relationship. For us, HERMIT represents
the path of least resistance to using HaskHOL to verify Haskell at the core level, a
desirable target for a number of potential projects. For them, we’re hoping that
HaskHOL represents a viable method for generating proof objects to provide
trust in advanced and complex language transformations. It is our goal to have
at least a theoretical connection between the two tools done by this summer.
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