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ABSTRACT
Transitioning between an implementation and verification
environment is a prime source for introducing complexity
and errors to software verification. When working with a
reasoning tool that is logically distant from the implemen-
tation language this problem is particularly evident. In this
paper, we present a novel approach to verifying properties
of Haskell programs that is entirely contained in, and di-
rected by, the compiler. Leveraging GHC Haskell’s com-
piler plugin framework, Core expressions are automatically
translated to equivalent higher-order logic expressions for
use with HaskHOL, a Haskell-based HOL theorem prover.
To explore the applicability of the approach, we present an
example utilizing this Haskell-in-Haskell verification work
flow.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Languages, Verification

Keywords
Haskell, HOL, GHC, HaskHOL

1. INTRODUCTION
Among the most commonly cited advantages of working

with purely functional languages is how much easier reason-
ing about program behavior becomes when it is referentially
transparent. Unfortunately, for all of the benefits that the
paradigm brings, it does nothing to assuage a major prob-
lem in software verification: marshaling knowledge between
implementation and verification environments is, more often
than not, a complex and error prone process. Our previous
experience with the VSPEC [4] and Rosetta [1] tool suites
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provides anecdotal evidence supporting this claim, as we
found it difficult to restructure prover outputs to be mean-
ingful in the context of the original system specification. The
consequence of this problem is that, what should be easy
verifications of properties of purely functional programs are
either done hand-wavingly or not at all.

Take, for example, the three laws ascribed to the Monad

type class in the standard Haskell libraries:

{-
Left identity: return a >>= k == k a
Right identity: m >>= return == m
Associativity: m >>= (\x -> k x >>= h)

== (m >>= k) >>= h
-}
class Monad m where

(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

It is critically important that instances of the Monad class
obey these properties as they support the correctness of the
do-notation syntactic sugar. If instances are unfaithful in
their implementation, the behavior of any program that uti-
lizes them will be confusing at best and erroneous at worst.
Yet, in spite of their importance, most monadic libraries
either ignore these laws entirely or informally argue why
their implementation is correct; the Haskell equivalent of
“the proof is left as an exercise for the reader.”

Brian Huffman approached this problem [11] by present-
ing a technique for verifying constructor class properties in
Isabelle/HOLCF [15, 14]. Even under the assumption that a
tool existed that could automate the necessary translations,
e.g. a Haskabelle [8] equivalent for HOLCF, we found the so-
lution to be less than satisfying. It required the use of a large
and complex proof system and the domain-theoretic model
of Haskell’s type system is logically distant from the poly-
morphic lambda calculus that functional programmers are
already familiar with. Both of these factors present signifi-
cant barriers for Haskell library authors to overcome should
they formally verify their work.

In this paper, we present early work on a novel approach
to verifying properties of Haskell programs that will elim-
inate these barriers. Rather than working at the source
level, we instead target GHC Haskell’s [7] intermediate Core

representation, such that we can translate it directly to an
equivalent polymorphic, higher-order logic [3]. When imple-
menting this logic as a Haskell-embedded domain specific
language (EDSL), we can entirely direct the verification ef-
fort as a GHC compiler plugin. This allows a Haskell library
author to integrate verification into their standard compila-



tion process and have verification results replayed by the
compiler on demand.

2. GHC COMPILER PLUGINS
Inspired by a similar feature in GCC [6] 1, the GHC Team

recently added the ability for GHC to load user-written com-
piler plugins at compile time 2. These plugins install addi-
tional compilation phases into the compiler pipeline through
a function of type [CommandLineOption] -> [CoreToDo]

-> CoreM [CoreToDo]. In this signature, the abstract type
CoreToDo represents a single compilation pass. These passes
are constructed in a variety of ways to differentiate between
phases of different purpose, however, we’re primarily con-
cerned with the CoreDoPluginPass constructor that struc-
tures compilation passes introduced via user-written plugin.

This constructor carries a name for the new pass and a
function of type ModGuts -> CoreM ModGuts. Aptly named,
the ModGuts type stores pertinent information contained in
the “guts” of the module currently being compiled. Given
that this work relies on the compilation plugin framework as
a mechanism for automatic translation from implementation
language to verification logic, we focus on the CoreProgram

value stored in a ModGuts instance. This value holds all top-
level bindings in a module, stored approximately as a list
of Core expressions, the core data type that is the focus of
Section 3.

Abstractly, we desire a translation function with type Core
-> HOLTerm, where HOLTerm is the abstract representation

of higher-order terms in our target theorem prover, HaskHOL [2].
We could write this function directly using the GhcPlugins

module provided as part of the GHC API, however, brows-
ing the source documentation 3 and the formal specification
of Core developed by Richard Eisenberg 4 exposes a large
volume of minutiae surrounding GHC’s intermediate data
types. Instead, we rely on the Haskell Equational Reason-
ing Model-to-Implementation Tunnel (HERMIT) [5] to do
most of the heavy lifting for us.

Originally built as a tool for interactively developing new
optimization passes, HERMIT has since evolved to serve
as a generalized framework for constructing new compila-
tion passes of all forms. Figure 1, courtesy of Farmer et al.,
shows the key components of HERMIT. At the root of HER-
MIT is the Kansas University Rewrite Engine (KURE), an
EDSL for strategic rewriting [17]. HERMIT specializes the
primitive combinators of KURE to provide generic traver-
sals for GHC’s core data types, as indicated by the “GHC
Core Support” box in the aforementioned figure.

These traversals are structured by the following data type
providing a translation function from type a to type b, given
a context of type c and structural monad of type m:

data Translate c m a b =
Translate { apply :: c -> a -> m b }

1http://gcc.gnu.org/wiki/plugins
2https://www.haskell.org/ghc/docs/7.8.2/html/
users_guide/compiler-plugins.html
3http://www.haskell.org/ghc/docs/7.8.2/html/
libraries/ghc-7.8.2/GhcPlugins.html
4https://github.com/ghc/ghc/tree/master/docs/
core-spec

Figure 1: The HERMIT framework.

In HERMIT, this type is specialized to:

type TranslateH a b =
Translate Context HermitM a b

where HermitM is GHC’s core monad, CoreM, augmented
with error handling. The Context for HERMIT transla-
tions is constructed in the other critical portion its frame-
work, the“Kernel.” All bindings in scope are converted to an
abstract syntax tree that HERMIT can operate over, such
that translations that require knowledge of other bindings
can be made. Refining our earlier statement from this sec-
tion, we are looking to develop a translation function with
type TranslateH Core HOLTerm that HERMIT can use to
install a new compilation pass for verification of a module
at a phase of our choice.

3. GHC CORE
The intermediate language of GHC, Core, is an implemen-

tation of System F↑
C [20], an extension of System FC [18]

that supports data type promotion. System FC is itself is
an extension of the the well known System F [16] that sup-
ports type-level equalities through coercion. Given this is
still preliminary work, we make some simplifying assump-
tions about the possible values of the Core types:

• Types are simply Kinded, i.e. ? or k1 → k2.
• Type polymorphism is sufficiently restricted to be rep-

resentable in our target logic, i.e. Rank-2 Types or
simpler.



type CoreProgram = [Bind]

type Bind = (Id, Core)

data Core
= Var Id
| App Core Core
| Lam Id Core
| Let [Bind] Core
| Case Core Type [Alt]
| Type Type

data Type
= TyVarTy Id
| AppTy Type Type
| TyConApp TyCon [Type]
| FunTy Type Type
| ForAllTy Id Type

type Alt = (AltCon , Core)

data AltCon
= DataAlt DataCon
| DEFAULT

data Id
= TyVar { varName :: Name }
| Id { varName :: Name ,

varType :: Type }

Figure 2: The Core data type.

data HOLType
= TyVar String
| TyApp TypeOp [HOLType]
| UType HOLType HOLType

data HOLTerm
= Var String HOLType
| Const String HOLType ConstTag
| Comb HOLTerm HOLTerm
| Abs HOLTerm HOLTerm
| TyComb HOLTerm HOLType
| TyAbs HOLType HOLTerm

Figure 3: HaskHOL’s primitive data types.

• Casts can be discharged before translation of Types,
i.e. newtypes and GADTs can be replaced with equiva-
lent data definitions.
• Binding groups can be reduced to a list of possibly

self-recursive, but not mutually recursive, expressions.
• Literal, TyLit, DataCon, and TyCon constants all map

trivially to equivalent constants in our target theorem
prover.

This results in the simplified view of the Core data types
shown in Figure 2.

The previously stated assumptions are made both to sim-
plify the translation semantics and to guarantee that our
initial examples can be mapped to HaskHOL’s 2nd order
polymorphic logic. We provide a simplified view of the prim-
itive data types of our prototype implementation of this logic
in Figure 3.

Figures 4 and 5 document a semantics for translating from
Core to HOLTerm. Note that we rely on a more human read-

Id to HOLType

id 7→ TyV ar (varName id)

Core to HOLType

ty 7→ ty′

Type ty 7→ ty′

Type to HOLType

id 7→ id′

TyV arTy id 7→ id′

id ; op ty 7→ ty′

AppTy (TyV arTy id) ty 7→ TyApp op [ty′]

ty1 7→ TyApp op tys ty2 7→ ty2′

AppTy ty1 ty2 7→ TyApp op (tys + +[ty2′])

con ; op ty1 7→ ty1′ ... tyn 7→ tyn′

TyConApp op [ty1, ..., tyn] 7→ TyApp op [ty1′, ..., tyn′]

ty1 7→ ty1′ ty2 7→ ty2′

FunTy ty1 ty2 7→ TyApp tyOpFun [ty1′, ty2′]

id 7→ id′ ty 7→ ty′

ForallTy id ty 7−→ UType id′ ty′

Figure 4: Translation semantics for HOLTypes.

able, quasi-quoted form in the rules for the Let and Case

constructor cases. This is purely to save space, as the defi-
nitions for syntactic sugar in most HOL systems expand to
quite large applications of primitive constructors.

4. MONAD VERIFICATION
We demonstrate the proposed verification pipeline by step-

ping through a proof of the monad laws for the instance of
the Identity data type shown below. Note that the syntax
of pretty-printed HOLTerms used by HaskHOL is differenti-
ated by the [hol| ... |] quasi-quoter for all examples in
this section.

data Identity a = Identity a

runIdentity :: Identity a -> a
runIdentity (Identity a) = a

instance Monad Identity where
m >>= k = k (runIdentity m)
return a = Identity a

In Core, a parameterized type class, such as Monad, is flat-
tened to a higher-order dictionary constructor that accepts
arguments for the definitions of its non-proper morphisms.
The pretty-printed Type for the Monad dictionary construc-
tor follows:



Id to HOLTerm

id 7−→ V ar (varName id) (varType id)

Core to HOLTerm

id 7−→ id′

V ar id 7−→ id′

f 7−→ f ′ arg 7−→ arg′

let C = if (isType arg) then TyComb else Comb

App f arg 7−→ C f ′ arg′

id 7−→ id′ tm 7−→ tm′

let C = if (isTyV ar id) then TyAbs else Abs

Lam id tm 7−→ C id′ tm′

bnds 7−→ [(id1, tm1), ..., (idn, tmn)] bod 7−→ bod′

Let bnds bod 7−→ [|let id1 = tm1 and ... idn = tmn in bod′|]

alts 7−→ [(c1, a1), ..., (cn, an)]

Case x ty alts 7−→ [|match x : ty with c1→ a1| ... |cn→ an|]

Figure 5: Translation semantics for HOLTerms.

forall (m :: * -> *).
(forall a b. m a -> (a -> m b) -> m b)
-> (forall a. a -> m a) -> Monad m

We model this constructor in HaskHOL by introducing a
new term constant to our theory of matching type. All that
is required is to provide explicit parameter names for the
non-proper morphisms in their correct order:

newDefinition [hol|
MONAD (bind : % ’A ’B. ’A _M ->

(’A -> ’B _M) -> ’B _M)
(return : % ’A. ’A -> ’A _M) = ...

|]

Ignoring minor syntactic differences between the represen-
tations, we have a nearly identical signature, as one would
expect with the translation semantics presented in the pre-
vious section. The only significant difference is that the
original parameterized type, m, is left free in the HOL def-
inition. We elected to make this simplification as we knew
we would only be dealing with saturated applications of the
Monad dictionary, thus its value is easily inferable and, there-
fore, redundant.

Following the technique presented in the examples of the
polymorphic HOL system that influenced HaskHOL, HOL2P [19],
we define the MONAD constant in terms of the conjunction of
its associated properties. These properties are communi-
cated to HERMIT as GHC rewrite rules5 contained within
the module:

{-# RULES
"monad_law1" [~]

forall a k. return a >>= k = k a
#-}

5http://www.haskell.org/ghc/docs/latest/html/
users_guide/rewrite-rules.html

We rely on the recently added special phase notation, ~, to
indicate to the compiler that we do not want the rule to
be active. Thus we gain the advantage of having the rule
parsed and typechecked to confirm that it is a valid Haskell
expression without it interfering with the compilation of our
source code.

In HERMIT, the introduced rule is available as a lemma
that we can treat as a pair of Core expressions to be trans-
lated:

forall m a b $dMonad $dMonad a k.
(>>=) m $dMonad a b (return m $dMonad a a) k
==
k a

Following a second, similar simplification we can discard
quantifications for the parameter type and any dictionary
types. Thus, when provided with the requisite mapping from
Haskell to HaskHOL identifiers, our translation semantics
produces the following term:

[hol| !! ’A ’B. ! (a:’A) (k:’A -> ’B _M).
bind [:’A] [:’B] (return [:’A] a) k =

k a
|]

After translating the remaining rules, our definition of the
Monad type class in HaskHOL is complete.

We proceed with the verification by translating remaining
top-level bindings, introducing them to the theory context
using HaskHOL’s defineType and define methods accord-
ingly.

defineType "Identity = Identity A"

define [hol| runIdentity = \\ ’A. \x.
match x:’A Identity with

Identity a -> a
|]

With these definitions in place, we can build a proof obliga-
tion by translating the binding GHC generated for Identity
’s Monad instance:

$fMonadIdentity :: Monad Identity
$fMonadIdentity =

D:Monad Identity $c >>= Identity

$c >>= :: forall a b . Identity a ->
(a -> Identity b) -> Identity b

$c >>= =
\ a b m k -> k (runIdentity a m)

After again discarding any unnecessary type arguments
and performing any necessary inlining, we have a fully sat-
urated application of the MONAD constructor:

prove [hol|
MONAD

(\\ ’A ’B. \ m k. k (runIdentity [:’A] m))
IDTYPE

|] by
...

In this case, proof proceeds quite trivially via repeated sim-
plification using the definitional theorems of the constants
introduced in the previous steps.



5. CONCLUSIONS AND RELATED WORK
The workflow documented in the previous section is not

fully fleshed out and is difficult to accurately evaluate. How-
ever, one obvious point to begin discussion with is the sim-
plifying assumptions stated in Section 3. In some cases
these simplifications are necessitated by a lack of function-
ality in the HaskHOL proof system. The restrictions on
kinds and higher rank types, specifically, are mandated by
HaskHOL’s type system; largely inherited from the previ-
ously mentioned HOL2P. However, these restrictions could
be lifted or lessened if the target logic was sufficiently ad-
vanced. The HOL-Omega system [10] is taking steps in this
direction, differentiating itself from other members of the
HOL family by introducing a universe of kinds that ap-
proaches that found in System F↑

C . Any future advance-
ments to HaskHOL would likely be inspired by this research.

Similarly, the manipulation of Binding groups is mandated
by the design of HaskHOL’s define method; again, inherited
from an inspirational system, HOL Light [9]. The ability to
handle mutually recursive definitions exists in other mem-
bers of the HOL family, though; notably in Isabelle/HOL [12].
In either case, the lack of functionality speaks more to the
youth of HaskHOL than it does a failure or weakness in the
proposed technique for compiler directed verification.

Remaining simplifying assumptions are made not with the
intention to skirt difficult work, but because we have not
fully explored the intricacies of GHC Core. As an example,
note the differences in the definition of runIdentity when
the Identity type is introduced as a newtype rather than a
data type:

-- newtype
runIdentity :: forall a. Identity a -> a
runIdentity = \ a ds -> ds ‘cast ‘

(axiomInst NTCo:Identity 0
<Representational:a>)

-- data
runIdentity :: forall a. Identity a -> a
runIdentity = \ a ds ->

case ds of wild a
Identity a -> a

In the first piece of code the type of the argument term is
coerced, essentially erasing the ephemeral newtype wrapper,
without modifying its structure. For this specific example
a conversion between the two forms seems immediately ob-
vious, however, it opens the door to the larger question of
how to handle Coercions in general. For the time being,
we elect defer questions like this in favor of focusing on in-
creasing the level of automation in the proposed verification
process rather than the number of language features it sup-
ports.

Automation is, of course, critically important to any ver-
ification process. So much so, that a number of popular
theorem prover tools have added functionality to automat-
ically generate executable source code from specifications
verified in their environments. Given that the specification
languages of proof systems like Coq [13] and Isabelle are be-
coming increasingly full-featured, this is arguably a prefer-
able path to verifying new programs. However, our work
is predominantly focused on verifying, and re-verifying on
demand, existing programs.

The most closely related research that shares this goal is
the previously mentioned Haskabelle tool. Completing the

isomorphism between Haskell and Isabelle/HOL, Haskabelle
translates existing Haskell source files into verifiable Isabelle
specifications. The principal difference between that work
and ours is that Haskabelle operates at the source level,
where as we aim to operate at the intermediate, compiler
level. Ultimately, the goal of our work is provide a transla-
tion from Haskell to HOL that is as robust as Haskabelle’s,
without requiring the added footprint of a major proof sys-
tem, like Isabelle, and without leaving the GHC environ-
ment. It is our belief that by constraining the verification
effort to a compiler plugin pass, we enable more automation
with fewer errors.
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